No Arabic abstract
The design of algorithms that generate personalized ranked item lists is a central topic of research in the field of recommender systems. In the past few years, in particular, approaches based on deep learning (neural) techniques have become dominant in the literature. For all of them, substantial progress over the state-of-the-art is claimed. However, indications exist of certain problems in todays research practice, e.g., with respect to the choice and optimization of the baselines used for comparison, raising questions about the published claims. In order to obtain a better understanding of the actual progress, we have tried to reproduce recent results in the area of neural recommendation approaches based on collaborative filtering. The worrying outcome of the analysis of these recent works-all were published at prestigious scientific conferences between 2015 and 2018-is that 11 out of the 12 reproducible neural approaches can be outperformed by conceptually simple methods, e.g., based on the nearest-neighbor heuristics. None of the computationally complex neural methods was actually consistently better than already existing learning-based techniques, e.g., using matrix factorization or linear models. In our analysis, we discuss common issues in todays research practice, which, despite the many papers that are published on the topic, have apparently led the field to a certain level of stagnation.
In recent years, algorithm research in the area of recommender systems has shifted from matrix factorization techniques and their latent factor models to neural approaches. However, given the proven power of latent factor models, some newer neural approaches incorporate them within more complex network architectures. One specific idea, recently put forward by several researchers, is to consider potential correlations between the latent factors, i.e., embeddings, by applying convolutions over the user-item interaction map. However, contrary to what is claimed in these articles, such interaction maps do not share the properties of images where Convolutional Neural Networks (CNNs) are particularly useful. In this work, we show through analytical considerations and empirical evaluations that the claimed gains reported in the literature cannot be attributed to the ability of CNNs to model embedding correlations, as argued in the original papers. Moreover, additional performance evaluations show that all of the examined recent CNN-based models are outperformed by existing non-neural machine learning techniques or traditional nearest-neighbor approaches. On a more general level, our work points to major methodological issues in recommender systems research.
As the field of recommender systems has developed, authors have used a myriad of notations for describing the mathematical workings of recommendation algorithms. These notations ap-pear in research papers, books, lecture notes, blog posts, and software documentation. The dis-ciplinary diversity of the field has not contributed to consistency in notation; scholars whose home base is in information retrieval have different habits and expectations than those in ma-chine learning or human-computer interaction. In the course of years of teaching and research on recommender systems, we have seen the val-ue in adopting a consistent notation across our work. This has been particularly highlighted in our development of the Recommender Systems MOOC on Coursera (Konstan et al. 2015), as we need to explain a wide variety of algorithms and our learners are not well-served by changing notation between algorithms. In this paper, we describe the notation we have adopted in our work, along with its justification and some discussion of considered alternatives. We present this in hope that it will be useful to others writing and teaching about recommender systems. This notation has served us well for some time now, in research, online education, and traditional classroom instruction. We feel it is ready for broad use.
Owing to the superiority of GNN in learning on graph data and its efficacy in capturing collaborative signals and sequential patterns, utilizing GNN techniques in recommender systems has gain increasing interests in academia and industry. In this survey, we provide a comprehensive review of the most recent works on GNN-based recommender systems. We proposed a classification scheme for organizing existing works. For each category, we briefly clarify the main issues, and detail the corresponding strategies adopted by the representative models. We also discuss the advantages and limitations of the existing strategies. Furthermore, we suggest several promising directions for future researches. We hope this survey can provide readers with a general understanding of the recent progress in this field, and shed some light on future developments.
Hyperbolic space and hyperbolic embeddings are becoming a popular research field for recommender systems. However, it is not clear under what circumstances the hyperbolic space should be considered. To fill this gap, This paper provides theoretical analysis and empirical results on when and where to use hyperbolic space and hyperbolic embeddings in recommender systems. Specifically, we answer the questions that which type of models and datasets are more suited for hyperbolic space, as well as which latent size to choose. We evaluate our answers by comparing the performance of Euclidean space and hyperbolic space on different latent space models in both general item recommendation domain and social recommendation domain, with 6 widely used datasets and different latent sizes. Additionally, we propose a new metric learning based recommendation method called SCML and its hyperbolic version HSCML. We evaluate our conclusions regarding hyperbolic space on SCML and show the state-of-the-art performance of hyperbolic space by comparing HSCML with other baseline methods.
In this work, we consider how preference models in interactive recommendation systems determine the availability of content and users opportunities for discovery. We propose an evaluation procedure based on stochastic reachability to quantify the maximum probability of recommending a target piece of content to an user for a set of allowable strategic modifications. This framework allows us to compute an upper bound on the likelihood of recommendation with minimal assumptions about user behavior. Stochastic reachability can be used to detect biases in the availability of content and diagnose limitations in the opportunities for discovery granted to users. We show that this metric can be computed efficiently as a convex program for a variety of practical settings, and further argue that reachability is not inherently at odds with accuracy. We demonstrate evaluations of recommendation algorithms trained on large datasets of explicit and implicit ratings. Our results illustrate how preference models, selection rules, and user interventions impact reachability and how these effects can be distributed unevenly.