Do you want to publish a course? Click here

Quantifying the unextendibility of entanglement

92   0   0.0 ( 0 )
 Added by Xin Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The unextendibility or monogamy of entangled states is a key property of quantum entanglement. Unlike conventional ways of expressing entanglement monogamy via entanglement measure inequalities, we develop a state-dependent resource theory to quantify the unextendibility of bipartite entangled states. First, we introduce a family of entanglement measures called unextendible entanglement. Given a bipartite state $rho_{AB}$, the key idea behind these measures is to minimize a divergence between $rho_{AB}$ and any possibly reduced state $rho_{AB}$ of an extension $rho_{ABB}$ of $rho_{AB}$. These measures are intuitively motivated by the fact that the more a bipartite state is entangled, the less that each of its individual systems can be entangled with a third party. Second, we show that the unextendible entanglement is an entanglement monotone under two-extendible operations, which include local operations and one-way classical communication as a special case. Unextendible entanglement has several other desirable properties, including normalization and faithfulness. As applications, we show that the unextendible entanglement provides efficiently computable benchmarks for the rate of perfect secret key distillation or entanglement distillation, as well as for the overhead of probabilistic secret key or entanglement distillation.



rate research

Read More

178 - Xin Wang , Mark M. Wilde , Yuan Su 2019
To achieve universal quantum computation via general fault-tolerant schemes, stabilizer operations must be supplemented with other non-stabilizer quantum resources. Motivated by this necessity, we develop a resource theory for magic quantum channels to characterize and quantify the quantum magic or non-stabilizerness of noisy quantum circuits. For qudit quantum computing with odd dimension $d$, it is known that quantum states with non-negative Wigner function can be efficiently simulated classically. First, inspired by this observation, we introduce a resource theory based on completely positive-Wigner-preserving quantum operations as free operations, and we show that they can be efficiently simulated via a classical algorithm. Second, we introduce two efficiently computable magic measures for quantum channels, called the mana and thauma of a quantum channel. As applications, we show that these measures not only provide fundamental limits on the distillable magic of quantum channels, but they also lead to lower bounds for the task of synthesizing non-Clifford gates. Third, we propose a classical algorithm for simulating noisy quantum circuits, whose sample complexity can be quantified by the mana of a quantum channel. We further show that this algorithm can outperform another approach for simulating noisy quantum circuits, based on channel robustness. Finally, we explore the threshold of non-stabilizerness for basic quantum circuits under depolarizing noise.
Quantum addition channels have been recently introduced in the context of deriving entropic power inequalities for finite dimensional quantum systems. We prove a reverse entropy power equality which can be used to analytically prove an inequality conjectured recently for arbitrary dimension and arbitrary addition weight. We show that the relative entropic difference between the output of such a quantum additon channel and the corresponding classical mixture quantitatively captures the amount of coherence present in a quantum system. This new coherence measure admits an upper bound in terms of the relative entropy of coherence and is utilized to formulate a state-dependent uncertainty relation for two observables. Our results may provide deep insights to the origin of quantum coherence for mixed states that truly come from the discrepancy between quantum addition and the classical mixture.
Quantifying entanglement is one of the most important tasks in the entanglement theory. In this paper, we establish entanglement monotones in terms of an operational approach, which is closely connected with the state conversion from pure states to the objective state by the local operations and classical communications (LOCC). It is shown that any good entanglement quantifier defined on pure states can induce an entanglement monotone for all density matrices. We especially show that our entanglement monotone is the maximal one among all that have the same form for pure states. In some particular cases, our proposed entanglement monotones turned to be equivalent to the convex roof construction, which hence gains an operational meaning. Some examples are given to demonstrate the different cases.
Coherence and entanglement are fundamental properties of quantum systems, promising to power the near future quantum computers, sensors and simulators. Yet, their experimental detection is challenging, usually requiring full reconstruction of the system state. We show that one can extract quantitative bounds to the relative entropy of coherence and the coherent information, coherence and entanglement quantifiers respectively, by a limited number of purity measurements. The scheme is readily implementable with current technology to verify quantum computations in large scale registers, without carrying out expensive state tomography.
220 - Mark M. Wilde 2021
The distillable entanglement of a bipartite quantum state does not exceed its entanglement cost. This well known inequality can be understood as a second law of entanglement dynamics in the asymptotic regime of entanglement manipulation, excluding the possibility of perpetual entanglement extraction machines that generate boundless entanglement from a finite reserve. In this paper, I establish a refined second law of entanglement dynamics that holds for the non-asymptotic regime of entanglement manipulation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا