Projection decoding of some binary optimal linear codes of lengths 36 and 40


Abstract in English

Practically good error-correcting codes should have good parameters and efficient decoding algorithms. Some algebraically defined good codes such as cyclic codes, Reed-Solomon codes, and Reed-Muller codes have nice decoding algorithms. However, many optimal linear codes do not have an efficient decoding algorithm except for the general syndrome decoding which requires a lot of memory. Therefore, it is a natural question whether which optimal linear codes have an efficient decoding. We show that two binary optimal $[36,19,8]$ linear codes and two binary optimal $[40,22,8]$ codes have an efficient decoding algorithm. There was no known efficient decoding algorithm for the binary optimal $[36,19,8]$ and $[40,22,8]$ codes. We project them onto the much shorter length linear $[9,5,4]$ and $[10, 6, 4]$ codes over $GF(4)$, respectively. This decoding algorithms, called {em projection decoding}, can correct errors of weight up to 3. These $[36,19,8]$ and $[40,22,8]$ codes respectively have more codewords than any optimal self-dual $[36, 18, 8]$ and $[40,20,8]$ codes for given length and minimum weight, implying that these codes more practical.

Download