Do you want to publish a course? Click here

On Hermite-Hadamard type inequalities for harmonical $h$-convex interval-valued functions

72   0   0.0 ( 0 )
 Added by Delfim F. M. Torres
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We introduce and investigate the concept of harmonical $h$-convexity for interval-valued functions. Under this new concept, we prove some new Hermite-Hadamard type inequalities for the interval Riemann integral.



rate research

Read More

In this paper, we introduce the concept of operator geometrically convex functions for positive linear operators and prove some Hermite-Hadamard type inequalities for these functions. As applications, we obtain trace inequalities for operators which give some refinements of previous results.
Two articles published by Information Science discuss the derivatives of interval functions, in the sense of Svetoslav Markov. The authors of these articles tried to characterize for which functions and points such derivatives exist. Unfortunately, their characterization is inaccurate. This article describes this inaccuracy and explains how it can be corrected.
We derive two upper bounds for the probability of deviation of a vector-valued Lipschitz function of a collection of random variables from its expected value. The resulting upper bounds can be tighter than bounds obtained by a direct application of a classical theorem due to Bobkov and G{o}tze.
For positive semidefinite matrices $A$ and $B$, Ando and Zhan proved the inequalities $||| f(A)+f(B) ||| ge ||| f(A+B) |||$ and $||| g(A)+g(B) ||| le ||| g(A+B) |||$, for any unitarily invariant norm, and for any non-negative operator monotone $f$ on $[0,infty)$ with inverse function $g$. These inequalities have very recently been generalised to non-negative concave functions $f$ and non-negative convex functions $g$, by Bourin and Uchiyama, and Kosem, respectively. In this paper we consider the related question whether the inequalities $||| f(A)-f(B) ||| le ||| f(|A-B|) |||$, and $||| g(A)-g(B) ||| ge ||| g(|A-B|) |||$, obtained by Ando, for operator monotone $f$ with inverse $g$, also have a similar generalisation to non-negative concave $f$ and convex $g$. We answer exactly this question, in the negative for general matrices, and affirmatively in the special case when $Age ||B||$. In the course of this work, we introduce the novel notion of $Y$-dominated majorisation between the spectra of two Hermitian matrices, where $Y$ is itself a Hermitian matrix, and prove a certain property of this relation that allows to strengthen the results of Bourin-Uchiyama and Kosem, mentioned above.
129 - R. Klen , M. Visuri , M. Vuorinen 2010
This paper deals with some inequalities for trigonometric and hyperbolic functions such as the Jordan inequality and its generalizations. In particular, lower and upper bounds for functions such as (sin x)/x and x/(sinh x) are proved.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا