Do you want to publish a course? Click here

Cross-correlators of conserved charges in QCD

83   0   0.0 ( 0 )
 Added by Paolo Parotto
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We present cross-correlators of QCD conserved charges at $mu_B=0$ from lattice simulations and perform a Hadron Resonance Gas (HRG) model analysis to break down the hadronic contributions to these correlators. We construct a suitable hadronic proxy for the ratio $-chi_{11}^{BS}/chi_2^S$ and discuss the dependence on the chemical potential and experimental cuts. We then perform a comparison to preliminary STAR results and comment on a possible direct comparison of lattice and experiment.



rate research

Read More

We construct net baryon number and strangeness susceptibilities as well as correlations between electric charge, strangeness and baryon number from experimental data on the particle production yields at midrapidity of the ALICE Collaboration at CERN. The data were taken in central Pb-Pb collisions at $sqrt{s_{rm NN}}$~=~2.76~TeV and cover one unit of rapidity. We show that the resulting fluctuations and correlations are consistent with Lattice QCD results at the chiral crossover pseudocritical temperature $T_{c} simeq$ 155 MeV. This agreement lends strong support to the assumption that the fireball created in these collisions is of thermal origin and exhibits characteristic properties expected in QCD at the transition from the quark gluon plasma to the hadronic phase. Since Lattice QCD calculations are performed at a baryochemical potential of $mu_{B}$ = 0, the comparisons with LHC data are the most direct due to the vanishing baryon transport to midrapidity at these high energies.
We present a study of correlations among conserved charges like baryon number, electric charge and strangeness in the framework of 2+1 flavor Polyakov loop extended Nambu-Jona-Lasinio model at vanishing chemical potentials, up to fourth order. Correlations up to second order have been measured in Lattice QCD which compares well with our estimates given the inherent difference in the pion masses in the two systems. Possible physical implications of these correlations and their importance in understanding the matter obtained in heavy-ion collisions are discussed. We also present comparison of the results with the commonly used unbound effective potential in the quark sector of this model.
Like fluctuations, non-diagonal correlators of conserved charges provide a tool for the study of chemical freeze-out in heavy ion collisions. They can be calculated in thermal equilibrium using lattice simulations, and be connected to moments of event-by-event net-particle multiplicity distributions. We calculate them from continuum extrapolated lattice simulations at $mu_B=0$, and present a finite-$mu_B$ extrapolation, comparing two different methods. In order to relate the grand canonical observables to the experimentally available net-particle fluctuations and correlations, we perform a Hadron Resonance Gas (HRG) model analysis, which allows us to completely break down the contributions from different hadrons. We then construct suitable hadronic proxies for fluctuations ratios, and study their behavior at finite chemical potentials. We also study the effect of introducing acceptance cuts, and argue that the small dependence of certain ratios on the latter allows for a direct comparison with lattice QCD results, provided that the same cuts are applied to all hadronic species. Finally, we perform a comparison for the constructed quantities for experimentally available measurements from the STAR Collaboration. Thus, we estimate the chemical freeze-out temperature to 165 MeV using a strangeness-related proxy. This is a rather high temperature for the use of the Hadron Resonance Gas, thus, further lattice studies are necessary to provide first principle results at intermediate $mu_B$.
233 - L. Ya. Glozman 2020
Above a pseudocritical temperature of chiral symmetry restoration T_c the energy and the pressure are very far from the quark-gluon-plasma limit (i.e. ideal gas of free quarks and gluons). At the same time very soon above T_c fluctuations of conserved charges behave as if quarks were free particles. Within the T_c - 3T_c interval a chiral spin symmetry emerges in QCD which is not consistent with free quarks and suggests that degrees of freedom are chirally symmetric quarks bound into the color-singlet objects by the chromoelectric field. Here we analyse temporal and spatial correlators in this interval and demonstrate that they indicate simultaneously the chiral spin symmetry as well as absence of the interquark interactions in channels constrained by a current conservation. The latter channels are responsible for both fluctuations of conserved charges and for dileptons. Assuming that a SU(2)_color subgroup of SU(3)_color is deconfined soon above T_c but confinement persits in SU(3)_color/SU(2)_color in the interval T_c - 3T_c we are able to reconcile all empirical facts listed above.
We present a precise definition of a conserved quantity from an arbitrary covariantly conserved current available in a general curved spacetime with Killing vectors. This definition enables us to define energy and momentum for matter by the volume integral. As a result we can compute charges of Schwarzschild and BTZ black holes by the volume integration of a delta function singularity. Employing the definition we also compute the total energy of a static compact star. It contains both the gravitational mass known as the Misner-Sharp mass in the Oppenheimer-Volkoff equation and the gravitational binding energy. We show that the gravitational binding energy has the negative contribution at maximum by 68% of the gravitational mass in the case of a constant density. We finally comment on a definition of generators associated with a vector field on a general curved manifold.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا