Do you want to publish a course? Click here

Safe Interactive Model-Based Learning

76   0   0.0 ( 0 )
 Added by Marco Gallieri
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Control applications present hard operational constraints. A violation of these can result in unsafe behavior. This paper introduces Safe Interactive Model Based Learning (SiMBL), a framework to refine an existing controller and a system model while operating on the real environment. SiMBL is composed of the following trainable components: a Lyapunov function, which determines a safe set; a safe control policy; and a Bayesian RNN forward model. A min-max control framework, based on alternate minimisation and backpropagation through the forward model, is used for the offline computation of the controller and the safe set. Safety is formally verified a-posteriori with a probabilistic method that utilizes the Noise Contrastive Priors (NPC) idea to build a Bayesian RNN forward model with an additive state uncertainty estimate which is large outside the training data distribution. Iterative refinement of the model and the safe set is achieved thanks to a novel loss that conditions the uncertainty estimates of the new model to be close to the current one. The learned safe set and model can also be used for safe exploration, i.e., to collect data within the safe invariant set, for which a simple one-step MPC is proposed. The single components are tested on the simulation of an inverted pendulum with limited torque and stability region, showing that iteratively adding more data can improve the model, the controller and the size of the safe region.



rate research

Read More

Safe reinforcement learning aims to learn a control policy while ensuring that neither the system nor the environment gets damaged during the learning process. For implementing safe reinforcement learning on highly nonlinear and high-dimensional dynamical systems, one possible approach is to find a low-dimensional safe region via data-driven feature extraction methods, which provides safety estimates to the learning algorithm. As the reliability of the learned safety estimates is data-dependent, we investigate in this work how different training data will affect the safe reinforcement learning approach. By balancing between the learning performance and the risk of being unsafe, a data generation method that combines two sampling methods is proposed to generate representative training data. The performance of the method is demonstrated with a three-link inverted pendulum example.
112 - Wenliang Liu , Calin Belta 2021
We propose a policy search approach to learn controllers from specifications given as Signal Temporal Logic (STL) formulae. The system model is unknown, and it is learned together with the control policy. The model is implemented as a feedforward neural network (FNN). To capture the history dependency of the STL specification, we use a recurrent neural network (RNN) to implement the control policy. In contrast to prevalent model-free methods, the learning approach proposed here takes advantage of the learned model and is more efficient. We use control barrier functions (CBFs) with the learned model to improve the safety of the system. We validate our algorithm via simulations. The results show that our approach can satisfy the given specification within very few system runs, and therefore it has the potential to be used for on-line control.
In this paper, we study the learning of safe policies in the setting of reinforcement learning problems. This is, we aim to control a Markov Decision Process (MDP) of which we do not know the transition probabilities, but we have access to sample trajectories through experience. We define safety as the agent remaining in a desired safe set with high probability during the operation time. We therefore consider a constrained MDP where the constraints are probabilistic. Since there is no straightforward way to optimize the policy with respect to the probabilistic constraint in a reinforcement learning framework, we propose an ergodic relaxation of the problem. The advantages of the proposed relaxation are threefold. (i) The safety guarantees are maintained in the case of episodic tasks and they are kept up to a given time horizon for continuing tasks. (ii) The constrained optimization problem despite its non-convexity has arbitrarily small duality gap if the parametrization of the policy is rich enough. (iii) The gradients of the Lagrangian associated with the safe-learning problem can be easily computed using standard policy gradient results and stochastic approximation tools. Leveraging these advantages, we establish that primal-dual algorithms are able to find policies that are safe and optimal. We test the proposed approach in a navigation task in a continuous domain. The numerical results show that our algorithm is capable of dynamically adapting the policy to the environment and the required safety levels.
The last half-decade has seen a steep rise in the number of contributions on safe learning methods for real-world robotic deployments from both the control and reinforcement learning communities. This article provides a concise but holistic review of the recent advances made in using machine learning to achieve safe decision making under uncertainties, with a focus on unifying the language and frameworks used in control theory and reinforcement learning research. Our review includes: learning-based control approaches that safely improve performance by learning the uncertain dynamics, reinforcement learning approaches that encourage safety or robustness, and methods that can formally certify the safety of a learned control policy. As data- and learning-based robot control methods continue to gain traction, researchers must understand when and how to best leverage them in real-world scenarios where safety is imperative, such as when operating in close proximity to humans. We highlight some of the open challenges that will drive the field of robot learning in the coming years, and emphasize the need for realistic physics-based benchmarks to facilitate fair comparisons between control and reinforcement learning approaches.
As people spend up to 87% of their time indoors, intelligent Heating, Ventilation, and Air Conditioning (HVAC) systems in buildings are essential for maintaining occupant comfort and reducing energy consumption. These HVAC systems in smart buildings rely on real-time sensor readings, which in practice often suffer from various faults and could also be vulnerable to malicious attacks. Such faulty sensor inputs may lead to the violation of indoor environment requirements (e.g., temperature, humidity, etc.) and the increase of energy consumption. While many model-based approaches have been proposed in the literature for building HVAC control, it is costly to develop accurate physical models for ensuring their performance and even more challenging to address the impact of sensor faults. In this work, we present a novel learning-based framework for sensor fault-tolerant HVAC control, which includes three deep learning based components for 1) generating temperature proposals with the consideration of possible sensor faults, 2) selecting one of the proposals based on the assessment of their accuracy, and 3) applying reinforcement learning with the selected temperature proposal. Moreover, to address the challenge of training data insufficiency in building-related tasks, we propose a model-assisted learning method leveraging an abstract model of building physical dynamics. Through extensive experiments, we demonstrate that the proposed fault-tolerant HVAC control framework can significantly reduce building temperature violations under a variety of sensor fault patterns while maintaining energy efficiency.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا