Chrysanthemum-like high-entropy diboride nanoflowers: A new class of high-entropy nanomaterials


Abstract in English

High-entropy nanomaterials have been arousing considerable interest in recent years due to their huge composition space, unique microstructure, and adjustable properties. Previous studies focused mainly on high-entropy nanoparticles, while other high-entropy nanomaterials were rarely reported. Herein, we reported a new class of high-entropy nanomaterials, namely (Ta0.2Nb0.2Ti0.2W02Mo0.2)B2 high-entropy diboride (HEB-1) nanoflowers, for the first time. The formation possibility of HEB-1 was first theoretically analyzed from two aspects of lattice size difference and chemical reaction thermodynamics. We then successfully synthesized HEB-1 nanoflowers by a facile molten salt synthesis method at 1473 K. The as-synthesized HEB-1 nanoflowers showed an interesting chrysanthemum-like morphology assembled from numerous well-aligned nanorods with the diameters of 20-30 nm and lengths of 100-200 nm. Meanwhile, these nanorods possessed a single-crystalline hexagonal structure of metal diborides and highly compositional uniformity from nanoscale to microscale. In addition, the formation of the as-synthesized HEB-1 nanoflowers could be well interpreted by a classical surface-controlled crystal growth theory. This work not only enriches the categories of high-entropy nanomaterials but also opens up a new research field on the high-entropy diboride nanomaterials.

Download