Do you want to publish a course? Click here

Partial-Symmetry-Breaking Phase Transitions

104   0   0.0 ( 0 )
 Added by Brandon Robinson
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We demonstrate a novel feature of certain phase transitions in theories with large rank symmetry group that exhibit specific types of non-local interactions. A typical example of such a theory is a large-$N$ gauge theory where by `non-local interaction we mean the all-to-all coupling of color degrees of freedom. Recently it has been pointed out that nontrivial features of the confinement/deconfinement transition are understood as consequences of the coexistence of the confined and deconfined phases on the group manifold describing the color degrees of freedom. While these novel features of the confinement/deconfinement transition are analogous to the two-phase coexistence at the first order transition of more familiar local theories, various differences such as the partial breaking of the symmetry group appear due to the non-local interaction. In this article, we show that similar phase transitions with partially broken symmetry can exist in various examples from QFT and string theory. Our examples include the deconfinement and chiral transition in QCD, Gross-Witten-Wadia transition in two-dimensional lattice gauge theory, Douglas-Kazakov transition in two-dimensional gauge theory on sphere, and black hole/black string transition.



rate research

Read More

64 - P.Cea , M.Consoli , L.Cosmai 1995
We present a precise lattice computation of the slope of the effective potential for massless $(lambdaPhi^4)_4$ theory in the region of bare parameters indicated by the Brahms analysis of lattice data. Our results confirm the existence on the lattice of a remarkable phase of $(lambdaPhi^4)_4$ where Spontaneous Symmetry Breaking is generated through ``dimensional transmutation. The resulting effective potential shows no evidence for residual self-interaction effects of the shifted `Higgs field $h(x)=Phi(x)-langlePhirangle$, as predicted by ``triviality, and cannot be reproduced in perturbation theory. Accordingly the mass of the Higgs particle, by itself, does not represent a measure of any observable interaction.
We project onto the light-front the pions Poincare-covariant Bethe-Salpeter wave-function, obtained using two different approximations to the kernels of QCDs Dyson-Schwinger equations. At an hadronic scale both computed results are concave and significantly broader than the asymptotic distribution amplitude, phi_pi^{asy}(x)=6 x(1-x); e.g., the integral of phi_pi(x)/phi_pi^{asy}(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral symmetry breaking is responsible for hardening the amplitude.
We extend earlier studies of transverse Ward-Fradkin-Green-Takahashi identities in QED, their usefulness to constrain the transverse fermion-boson vertex and their importance for multiplicative renormalizability, to the equivalent gauge identities in QCD. To this end, we consider transverse Slavnov-Taylor identities that constrain the transverse quark-gluon vertex and derive its eight associated scalar form factors. The complete vertex can be expressed in terms of the quarks mass and wave-renormalization functions, the ghost-dressing function, the quark-ghost scattering amplitude and a set of eight form factors. The latter parametrize the hitherto unknown nonlocal tensor structure in the transverse Slavnov-Taylor identity which arises from the Fourier transform of a four-point function involving a Wilson line in coordinate space. We determine the functional form of these eight form factors with the constraints provided by the Bashir-Bermudez vertex and study the effects of this novel vertex on the quark in the Dyson-Schwinger equation using lattice QCD input for the gluon and ghost propagators. We observe significant dynamical chiral symmetry breaking and a mass gap that leads to a constituent mass of the order of 500 MeV for the light quarks. The flavor dependence of the mass and wave-renormalization functions as well as their analytic behavior on the complex momentum plane is studied and as an application we calculate the quark condensate and the pions weak decay constant in the chiral limit. Both are in very good agreement with their reference values.
116 - Christopher T. Hill 2018
We review and expand upon recent work demonstrating that Weyl invariant theories can be broken inertially, which does not depend upon a potential. This can be understood in a general way by the current algebra of these theories, independently of specific Lagrangians. Maintaining the exact Weyl invariance in a renormalized quantum theory can be accomplished by renormalization conditions that refer back to the VEVs of fields in the action. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential that breaks a U(1) symmetry together,with scale invariance.
We investigate non-linear extensions of the holographic soft wall model proposed by Karch, Katz, Son and Stephanov [1] including non-minimal couplings in the five-dimensional action. The non-minimal couplings bring a new parameter $a_0$ which controls the transition between spontaneous and explicit symmetry breaking near the limit of massless quarks (the chiral limit). In the physical region (positive quark mass), we show that above a critical value of the parameter $a_0$ the chiral condensate $langle bar{q} q rangle$ is finite in the chiral limit, signifying spontaneous chiral symmetry breaking. This result is supported by the lightest states arising in the spectrum of the pseudoscalar mesons, which become massless in the chiral limit and are therefore intrepreted as Nambu-Goldstone bosons. Moreover, the decay constants of the pseudoscalar mesons also support this conclusion, as well as the Gell-Mann-Oakes-Renner (GOR) relation satisfied by the lightest states. We also calculate the spectrum of scalar, vector, and axial-vector mesons with their corresponding decay constants. We describe the evolution of masses and decay constants with the increasing of the quark mass and for the physical mass we compare our results against available experimental data. Finally, we do not find instabilities in our model for the physical region (positive quark mass).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا