Generalized polynomials are mappings obtained from the conventional polynomials by the use of operations of addition, multiplication and taking the integer part. Extending the classical theorem of H. Weyl on equidistribution of polynomials, we show that a generalized polynomial $q(n)$ has the property that the sequence $(q(n) lambda)_{n in mathbb{Z}}$ is well distributed $bmod , 1$ for all but countably many $lambda in mathbb{R}$ if and only if $limlimits_{substack{|n| rightarrow infty n otin J}} |q(n)| = infty$ for some (possibly empty) set $J$ having zero density in $mathbb{Z}$. We also prove a version of this theorem along the primes (which may be viewed as an extension of classical results of I. Vinogradov and G. Rhin). Finally, we utilize these results to obtain new examples of sets of recurrence and van der Corput sets.