Do you want to publish a course? Click here

On dispersion relations and hadronic light-by-light scattering contribution to the muon anomalous magnetic moment

64   0   0.0 ( 0 )
 Added by Arkady Vainshtein
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the use of dispersion relations for the evaluation of the pseudoscalar contributions to the muon anomalous magnetic moment. We point out that, in the absence of experimental data, reconstruction of light-by-light scattering amplitudes from their absorptive parts is ambiguous and requires additional theoretical input. The need for an additional input makes dispersive computations of the hadronic light-by-light scattering contribution to g-2 akin to phenomenological models, in spite of pretense to the contrary. In particular, we argue that the recent proposal [1], based on the dispersive approach, satisfies short distance constraints at the expense of unjustifiably large deviations from the chiral limit.

rate research

Read More

The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.
The $pi^0$ pole constitutes the lowest-lying singularity of the hadronic light-by-light (HLbL) tensor, and thus provides the leading contribution in a dispersive approach to HLbL scattering in the anomalous magnetic moment of the muon $(g-2)_mu$. It is unambiguously defined in terms of the doubly-virtual pion transition form factor, which in principle can be accessed in its entirety by experiment. We demonstrate that, in the absence of a direct measurement, the full space-like doubly-virtual form factor can be reconstructed very accurately based on existing data for $e^+e^-to 3pi$, $e^+e^-to e^+e^-pi^0$, and the $pi^0togammagamma$ decay width. We derive a representation that incorporates all the low-lying singularities of the form factor, matches correctly onto the asymptotic behavior expected from perturbative QCD, and is suitable for the evaluation of the $(g-2)_mu$ loop integral. The resulting value, $a_mu^{pi^0text{-pole}}=62.6^{+3.0}_{-2.5}times 10^{-11}$, for the first time, represents a complete data-driven determination of the pion-pole contribution with fully controlled uncertainty estimates. In particular, we show that already improved singly-virtual measurements alone would allow one to further reduce the uncertainty in $a_mu^{pi^0text{-pole}}$.
We report the first result for the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment with all errors systematically controlled. Several ensembles using 2+1 flavors of physical mass Mobius domain-wall fermions, generated by the RBC/UKQCD collaborations, are employed to take the continuum and infinite volume limits of finite volume lattice QED+QCD. We find $a_mu^{rm HLbL} = 7.87(3.06)_text{stat}(1.77)_text{sys}times 10^{-10}$. Our value is consistent with previous model results and leaves little room for this notoriously difficult hadronic contribution to explain the difference between the Standard Model and the BNL experiment.
We report preliminary results for the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment. Several ensembles using 2+1 flavors of Mobius domain-wall fermions, generated by the RBC/UKQCD collaborations, are employed to take the continuum and infinite volume limits of finite volume lattice QED+QCD. We find $a_mu^{rm HLbL} = (7.41pm6.33)times 10^{-10}$
The quark-connected part of the hadronic light-by-light scattering contribution to the muons anomalous magnetic moment is computed using lattice QCD with chiral fermions. We report several significant algorithmic improvements and demonstrate their effectiveness through specific calculations which show a reduction in statistical errors by more than an order of magnitude. The most realistic of these calculations is performed with a near-physical, $171$ MeV pion mass on a $(4.6;mathrm{fm})^3$ spatial volume using the $32^3times 64$ Iwasaki+DSDR gauge ensemble of the RBC/UKQCD Collaboration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا