Do you want to publish a course? Click here

Unitary Subharmonic Response and Floquet Majorana Modes

204   0   0.0 ( 0 )
 Added by Oles Shtanko
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Detection and manipulation of excitations with non-Abelian statistics, such as Majorana fermions, are essential for creating topological quantum computers. To this end, we show the connection between the existence of such localized particles and the phenomenon of unitary subharmonic response (SR) in periodically driven systems. In particular, starting from highly nonequilibrium initial states, the unpaired Majorana modes exhibit spin oscillations with twice the driving period, are localized, and can have exponentially long lifetimes in clean systems. While the lifetime of SR is limited in translationally invariant systems, we show that disorder can be engineered to stabilize the subharmonic response of Majorana modes. A viable observation of this phenomenon can be achieved using modern multiqubit hardware, such as superconducting circuits and cold atomic systems.



rate research

Read More

Symmetry-protected topological superconductors (TSCs) can host multiple Majorana zero modes (MZMs) at their edges or vortex cores, while whether the Majorana braiding in such systems is non-Abelian in general remains an open question. Here we uncover in theory the unitary symmetry-protected non-Abelian statisitcs of MZMs and propose the experimental realization. We show that braiding two vortices with each hosting $N$ unitary symmetry-protected MZMs generically reduces to $N$ independent sectors, with each sector braiding two different Majorana modes. This renders the unitary symmetry-protected non-Abelian statistics. As a concrete example, we demonstrate the proposed non-Abelian statistics in a spin-triplet TSC which hosts two MZMs at each vortex and, interestingly, can be precisely mapped to a quantum anomalous Hall insulator. Thus the unitary symmetry-protected non-Abelian statistics can be verified in the latter insulating phase, with the application to realizing various topological quantum gates being studied. Finally, we propose a novel experimental scheme to realize the present study in an optical Raman lattice. Our work opens a new route for Majorana-based topological quantum computation.
Certain periodically driven quantum many-particle systems in one dimension are known to exhibit edge modes that are related to topological properties and lead to approximate degeneracies of the Floquet spectrum. A similar situation occurs in spin chains, where stable edge modes were shown to exist at all energies in certain integrable spin chains. Moreover, these edge modes were found to be remarkably stable to perturbations. Here we investigate the stability of edge modes in interacting, periodically driven, clean systems. We introduce a model that features edge modes that persist over times scales well in excess of the time needed for the bulk of the system to heat to infinite temperatures.
Majorana zero modes are a promising platform for topologically protected quantum information processing. Their non-Abelian nature, which is key for performing quantum gates, is most prominently exhibited through braiding. While originally formulated for two-dimensional (2d) systems, it has been shown that braiding can also be realized using one-dimensional (1d) wires by forming an essentially two-dimensional network. Here, we show that in driven systems far from equilibrium, one can do away with the second spatial dimension altogether by instead using quasienergy as the second dimension. To realize this, we use a Floquet topological superconductor which can exhibit Majorana modes at two special eigenvalues of the evolution operator, 0 and pi, and thus can realize four Majorana modes in a single, driven quantum wire. We describe and numerically evaluate a protocol that realizes a topologically protected exchange of two Majorana zero modes in a single wire by adiabatically modulating the Floquet drive and using the pi modes as auxiliary degrees of freedom.
We provide a current perspective on the rapidly developing field of Majorana zero modes in solid state systems. We emphasize the theoretical prediction, experimental realization, and potential use of Majorana zero modes in future information processing devices through braiding-based topological quantum computation. Well-separated Majorana zero modes should manifest non-Abelian braiding statistics suitable for unitary gate operations for topological quantum computation. Recent experimental work, following earlier theoretical predictions, has shown specific signatures consistent with the existence of Majorana modes localized at the ends of semiconductor nanowires in the presence of superconducting proximity effect. We discuss the experimental findings and their theoretical analyses, and provide a perspective on the extent to which the observations indicate the existence of anyonic Majorana zero modes in solid state systems. We also discuss fractional quantum Hall systems (the 5/2 state) in this context. We describe proposed schemes for carrying out braiding with Majorana zero modes as well as the necessary steps for implementing topological quantum computation.
We study a realistic Floquet topological superconductor, a periodically driven nanowire proximitized to an equilibrium s-wave superconductor. Due to both strong energy and density fluctuations caused from the superconducting proximity effect, the Floquet Majorana wire becomes dissipative. We show that the Floquet band structure is still preserved in this dissipative system. In particular, we find that both the Floquet Majorana zero and pi modes can no longer be simply described by the Floquet topological band theory. We also propose an effective model to simplify the calculation of the lifetime of these Floquet Majoranas, and find that the lifetime can be engineered by the external driving field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا