Do you want to publish a course? Click here

Topolectrical-circuit octupole insulator with topologically protected corner states

87   0   0.0 ( 0 )
 Added by Xiangdong Zhang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent theoretical studies have extended the Berry phase framework to account for higher electric multipole moments, quadrupole and octupole topological phases have been proposed. Although the two-dimensional quantized quadrupole insulators have been demonstrated experimentally, octupole topological phases have not previously been observed experimentally. Here we report on the experimental realization of classical analog of octupole topological insulator in the electric circuit system. Three-dimensional topolectrical circuits for realizing such topological phases are constructed experimentally. We observe octupole topological states protected by the topology of the bulk, which are localized at the corners. Our results provide conclusive evidence of a form of robustness against disorder and deformation, which is characteristic of octupole topological insulators. Our study opens a new route toward higher-order topological phenomena in three-dimensions and paves the way for employing topolectrical circuitry to study complex topological phenomena.



rate research

Read More

The modern theory of electric polarization in crystals associates the dipole moment of an insulator with a Berry phase of its electronic ground state [1, 2]. This concept constituted a breakthrough that not only solved the long-standing puzzle of how to calculate dipole moments in crystals, but also lies at the core of the theory of topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator [3, 4] and the quantum spin Hall insulator [5-7], as well as quantized adiabatic pumping processes [8-10]. A recent theoretical proposal extended the Berry phase framework to account for higher electric multipole moments [11], revealing the existence of topological phases that have not previously been observed. Here we demonstrate the first member of this predicted class -a quantized quadrupole topological insulator- experimentally produced using a GHz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase through both spectroscopic measurements, as well as with the identification of corner states that are manifested as a result of the bulk topology. We additionally test a critical prediction that these corner states are protected by the topology of the bulk, and not due to surface artifacts, by deforming the edge between the topological and trivial regimes. Our results provide conclusive evidence of a unique form of robustness which has never previously been observed.
158 - Si-Yuan Yu , Cheng He , Zhen Wang 2017
Precise control of elastic waves in modes and coherences is of great use in reinforcing nowadays elastic energy harvesting/storage, nondestructive testing, wave-mater interaction, high sensitivity sensing and information processing, etc. All these implementations are expected to have elastic transmission with lower transmission losses and higher degree of freedom in transmission path. Inspired by topological states of quantum matters, especially quantum spin Hall effects (QSHEs) providing passive solutions of unique disorder-immune surface states protected by underlying nontrivial topological invariants of the bulk, thus solving severe performance trade-offs in experimentally realizable topologically ordered states. Here, we demonstrate experimentally the first elastic analogue of QSHE, by a concise phononic crystal plate with only perforated holes. Strong elastic spin-orbit coupling is realized accompanied by the first topologically-protected phononic circuits with both robustness and negligible propagation loss overcoming many circuit- and system-level performance limits induced by scattering. This elegant approach in a monolithic substrate opens up the possibility of realizing topological materials for phonons in both static and time-dependent regimes, can be immediately applied to multifarious chip-scale devices with both topological protection and massive integration, such as on-chip elastic wave-guiding, elastic splitter, elastic resonator with high quality factor, and even (pseudo-)spin filter.
Topologically protected gapless edge states are phases of quantum matter which behave as massless Dirac fermions, immunizing against disorders and continuous perturbations. Recently, a new class of topological insulators (TIs) with topological corner states have been theoretically predicted in electric systems, and experimentally realized in two-dimensional (2D) mechanical and electromagnetic systems, electrical circuits, optical and sonic crystals, and elastic phononic plates. Here, we demonstrate a pseudospin-valley-coupled phononic TI, which simultaneously exhibits gapped edge states and topological corner states. Pseudospin-orbit coupling edge states and valley-polarized edge state are respectively induced by the lattice deformation and the symmetry breaking. When both of them coexist, these topological edge states will be greatly gapped and the topological corner state emerges. Under direct field measurements, the robust edge propagation behaving as an elastic waveguide and the topological corner mode working as a robust localized resonance are experimentally confirmed. The pseudospin-valley coupling in our phononic TIs can be well-controlled which provides a reconfigurable platform for the multiple edge and corner states, and exhibits well applications in the topological elastic energy recovery and the highly sensitive sensing.
Recently, the theory of quantized dipole polarization has been extended to account for electric multipole moments, giving rise to the discovery of multipole topological insulators (TIs). Both two-dimensional (2D) quadrupole and three-dimensional (3D) octupole TIs with robust zero-dimensional (0D) corner states have been realized in various classical systems. However, due to the intrinsic 3D limitation, the higher dimensional multipole TIs, such as four-dimensional (4D) hexadecapole TIs, are supposed to be extremely hard to construct in real space, although some of their properties have been discussed through the synthetic dimensions. Here, we theoretically propose and experimentally demonstrate the realization of classical analog of 4D hexadecapole TI based on the electric circuits in fully real space. The explicit construction of 4D hexadecapole circuits, where the connection of nodes is allowed in any desired way free from constraints of locality and dimensionality, is provided. By direct circuit simulations and impedance measurements, the in-gap corner states protected by the quantized hexadecapole moment in the 4D circuit lattices are observed and the robustness of corner state is also demonstrated. Our work offers a new pathway to study the higher order/dimensional topological physics in real space.
229 - Gotz S. Uhrig 2016
Topological effects continue to fascinate physicists since more than three decades. One of their main applications are high-precision measurements of the resistivity. We propose to make also use of the spatially separated edge states. It is possible to realize strongly direction-dependent group velocities. They can also be tuned over orders of magnitude so that robust delay lines and interference devices are within reach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا