Cross-dimensional relaxation of $^7$Li-$^{87}$Rb atomic gas mixtures in a spherical-quadrupole magnetic trap


Abstract in English

We measure the interspecies interaction strength between $^7$Li and $^{87}$Rb atoms through cross-dimensional relaxation of two-element gas mixtures trapped in a spherical quadrupole magnetic trap. We record the relaxation of an initial momentum-space anisotropy in a lithium gas when co-trapped with rubidium atoms, with both species in the $|F=1, m_F = -1rangle$ hyperfine state. Our measurements are calibrated by observing cross-dimensional relaxation of a $^{87}$Rb-only trapped gas. Through Monte Carlo simulations, we compare the observed relaxation to that expected given the theoretically predicted energy-dependent differential cross section for $^7$Li-$^{87}$Rb collisions. The experimentally observed relaxation occurs significantly faster than predicted theoretically, a deviation that appears incompatible with other experimental data characterising the $^7$Li-$^{87}$Rb molecular potential.

Download