No Arabic abstract
Let $mathcal{G}$ be an undirected graph with adjacency matrix $A$ and spectral radius $rho$. Let $w_k, phi_k$ and $phi_k^{(i)}$ be, respectively, the number walks of length $k$, closed walks of length $k$ and closed walks starting and ending at vertex $i$ after $k$ steps. In this paper, we propose a measure-theoretic framework which allows us to relate walks in a graph with its spectral properties. In particular, we show that $w_k, phi_k$ and $phi_k^{(i)}$ can be interpreted as the moments of three different measures, all of them supported on the spectrum of $A$. Building on this interpretation, we leverage results from the classical moment problem to formulate a hierarchy of new lower and upper bounds on $rho$, as well as provide alternative proofs to several well-known bounds in the literature.
In this paper, we present two sharp upper bounds for the spectral radius of (bipartite) graphs with forbidden a star forest and characterize all extremal graphs. Moreover, the minimum least eigenvalue of the adjacency matrix of graph with forbidden a star forest and all extremal graphs for graphs are obtained.
Let $G$ be a simple graph with vertex set $V(G) = {v_1 ,v_2 ,cdots ,v_n}$. The Harary matrix $RD(G)$ of $G$, which is initially called the reciprocal distance matrix, is an $n times n$ matrix whose $(i,j)$-entry is equal to $frac{1}{d_{ij}}$ if $i ot=j$ and $0$ otherwise, where $d_{ij}$ is the distance of $v_i$ and $v_j$ in $G$. In this paper, we characterize graphs with maximum spectral radius of Harary matrix in three classes of simple connected graphs with $n$ vertices: graphs with fixed matching number, bipartite graphs with fixed matching number, and graphs with given number of cut edges, respectively.
Let $A(G)$ be the adjacency matrix of a graph $G$ with $lambda_{1}(G)$, $lambda_{2}(G)$, ..., $lambda_{n}(G)$ being its eigenvalues in non-increasing order. Call the number $S_k(G):=sum_{i=1}^{n}lambda_{i}^k(G) (k=0,1,...,n-1)$ the $k$th spectral moment of $G$. Let $S(G)=(S_0(G),S_1(G),...,S_{n-1}(G))$ be the sequence of spectral moments of $G$. For two graphs $G_1$ and $G_2$, we have $G_1prec_sG_2$ if $S_i(G_1)=S_i(G_2) (i=0,1,...,k-1)$ and $S_k(G_1)<S_k(G_2)$ for some $kin {1,2,...,n-1}$. Denote by $mathscr{G}_n^k$ the set of connected $n$-vertex graphs with $k$ cut edges. In this paper, we determine the first, the second, the last and the second last graphs, in an $S$-order, among $mathscr{G}_n^k$, respectively.
We obtain new bounds for the Laplacian spectral radius of a signed graph. Most of these new bounds have a dependence on edge sign, unlike previously known bounds, which only depend on the underlying structure of the graph. We then use some of these bounds to obtain new bounds for the Laplacian and signless Laplacian spectral radius of an unsigned graph by signing the edges all positive and all negative, respectively.
Write $rholeft( Gright) $ for the spectral radius of a graph $G$ and $S_{n,r}$ for the join $K_{r}veeoverline{K}_{n-r}.$ Let $n>rgeq2$ and $G$ be a $K_{r+1}$-saturated graph of order $n.$ Recently Kim, Kim, Kostochka, and O determined exactly the minimum value of $rholeft( Gright) $ for $r=2$, and found an asymptotically tight bound on $rholeft( Gright) $ for $rgeq3.$ They also conjectured that [ rholeft( Gright) >rholeft( S_{n,r-1}right) , ] unless $G=S_{n,r-1}.$ In this note their conjecture is proved.