Do you want to publish a course? Click here

Interaction-induced lattices for bound states: Designing flat bands, quantized pumps and higher-order topological insulators for doublons

93   0   0.0 ( 0 )
 Added by Marco Di Liberto
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bound states of two interacting particles moving on a lattice can exhibit remarkable features that are not captured by the underlying single-particle picture. Inspired by this phenomenon, we introduce a novel framework by which genuine interaction-induced geometric and topological effects can be realized in quantum-engineered systems. Our approach builds on the design of effective lattices for the center-of-mass motion of two-body bound states (emph{doublons}), which can be created through long-range interactions. This general scenario is illustrated on several examples, where flat-band localization, topological pumps and higher-order topological corner modes emerge from genuine interaction effects. Our results pave the way for the exploration of interaction-induced topological effects in a variety of platforms, ranging from ultracold gases to interacting photonic devices.

rate research

Read More

The concept of topological phases has been generalized to higher-order topological insulators and superconductors with novel boundary states on corners or hinges. Meanwhile, recent experimental advances in controlling dissipation (such as gain and loss) open new possibilities in studying non-Hermitian topological phases. Here, we show that higher-order topological corner states can emerge by simply introducing staggered on-site gain/loss to a Hermitian system in trivial phases. For such a non-Hermitian system, we establish a general bulk-corner correspondence by developing a biorthogonal nested-Wilson-loop and edge-polarization theory, which can be applied to a wide class of non-Hermitian systems with higher-order topological orders. The theory gives rise to topological invariants characterizing the non-Hermitian topological multipole moments (i.e., corner states) that are protected by reflection or chiral symmetry. Such gain/loss induced higher-order topological corner states can be experimentally realized using photons in coupled cavities or cold atoms in optical lattices.
Conventional topological insulators support boundary states that have one dimension lower than the bulk system that hosts them, and these states are topologically protected due to quantized bulk dipole moments. Recently, higher-order topological insulators have been proposed as a way of realizing topological states that are two or more dimensions lower than the bulk, due to the quantization of bulk quadrupole or octupole moments. However, all these proposals as well as experimental realizations have been restricted to real-space dimensions. Here we construct photonic higher-order topological insulators (PHOTI) in synthetic dimensions. We show the emergence of a quadrupole PHOTI supporting topologically protected corner modes in an array of modulated photonic molecules with a synthetic frequency dimension, where each photonic molecule comprises two coupled rings. By changing the phase difference of the modulation between adjacently coupled photonic molecules, we predict a dynamical topological phase transition in the PHOTI. Furthermore, we show that the concept of synthetic dimensions can be exploited to realize even higher-order multipole moments such as a 4th order hexadecapole (16-pole) insulator, supporting 0D corner modes in a 4D hypercubic synthetic lattice that cannot be realized in real-space lattices.
Bloch oscillations (BOs) are a fundamental phenomenon by which a wave packet undergoes a periodic motion in a lattice when subjected to an external force. Observed in a wide range of synthetic lattice systems, BOs are intrinsically related to the geometric and topological properties of the underlying band structure. This has established BOs as a prominent tool for the detection of Berry phase effects, including those described by non-Abelian gauge fields. In this work, we unveil a unique topological effect that manifests in the BOs of higher-order topological insulators through the interplay of non-Abelian Berry curvature and quantized Wilson loops. It is characterized by an oscillating Hall drift that is synchronized with a topologically-protected inter-band beating and a multiplied Bloch period. We elucidate that the origin of this synchronization mechanism relies on the periodic quantum dynamics of Wannier centers. Our work paves the way to the experimental detection of non-Abelian topological properties in synthetic matter through the measurement of Berry phases and center-of-mass displacements.
The bulk-boundary correspondence, which links a bulk topological property of a material to the existence of robust boundary states, is a hallmark of topological insulators. However, in crystalline topological materials the presence of boundary states in the insulating gap is not always necessary since they can be hidden in the bulk energy bands, obscured by boundary artifacts of non-topological origin, or, in the case of higher-order topology, they can be gapped altogether. Crucially, in such systems the interplay between symmetry-protected topology and the corresponding symmetry defects can provide a variety of bulk probes to reveal their topological nature. For example, bulk crystallographic defects, such as disclinations and dislocations, have been shown to bind fractional charges and/or robust localized bound states in insulators protected by crystalline symmetries. Recently, exotic defects of translation symmetry called partial dislocations have been proposed as a probe of higher-order topology. However, it is a herculean task to have experimental control over the generation and probing of isolated defects in solid-state systems; hence their use as a bulk probe of topology faces many challenges. Instead, here we show that partial dislocation probes of higher-order topology are ideally suited to the context of engineered materials. Indeed, we present the first observations of partial-dislocation-induced topological modes in 2D and 3D higher-order topological insulators built from circuit-based resonator arrays. While rotational defects (disclinations) have previously been shown to indicate higher-order topology, our work provides the first experimental evidence that exotic translation defects (partial dislocations) are bulk topological probes.
A flat band in fermionic system is a dispersionless single-particle state with a diverging effective mass and nearly zero group velocity. These flat bands are expected to support exotic properties in the ground state, which might be important for a wide range of promising physical phenomena. For many applications it is highly desirable to have such states in Dirac materials, but so far they have been reported only in non-magnetic Dirac systems. In this work we propose a realization of topologically protected spin-polarized flat bands generated by domain walls in planar magnetic topological insulators. Using first-principles material design we suggest a family of intrinsic antiferromagnetic topological insulators with an in-plane sublattice magnetization and a high Neel temperature. Such systems can host domain walls in a natural manner. For these materials, we demonstrate the existence of spin-polarized flat bands in the vicinity of the Fermi level and discuss their properties and potential applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا