Models which estimate main effects of individual variables alongside interaction effects have an identifiability challenge: effects can be freely moved between main effects and interaction effects without changing the model prediction. This is a critical problem for interpretability because it permits contradictory models to represent the same function. To solve this problem, we propose pure interaction effects: variance in the outcome which cannot be represented by any smaller subset of features. This definition has an equivalence with the Functional ANOVA decomposition. To compute this decomposition, we present a fast, exact algorithm that transforms any piecewise-constant function (such as a tree-based model) into a purified, canonical representation. We apply this algorithm to Generalized Additive Models with interactions trained on several datasets and show large disparity, including contradictions, between the effects before and after purification. These results underscore the need to specify data distributions and ensure identifiability before interpreting model parameters.