Do you want to publish a course? Click here

Spitzer Space Telescope observations of bilobate comet 8P/Tuttle

370   0   0.0 ( 0 )
 Added by Olivier Groussin
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Comet 8P/Tuttle is a Nearly Isotropic Comet (NIC), whose physical properties are poorly known and could be different from those of Ecliptic Comets (EC) owing to their different origin. Two independent observations have shown that 8P has a bilobate nucleus. Our goal is to determine the physical properties of the nucleus (size, shape, thermal inertia, albedo) and coma (water and dust) of 8P/Tuttle. We observed the inner coma of 8P with the infrared spectrograph (IRS) and the infrared camera (MIPS) of the Spitzer Space Telescope (SST). We obtained one spectrum (5-40 $mu$m) on 2 November 2007 and a set of 19 images at 24 $mu$m on 22-23 June 2008 sampling the nucleus rotational period. The data were interpreted using thermal models for the nucleus and the dust coma, and considering 2 possible shape models of the nucleus derived from respectively Hubble Space Telescope visible and Arecibo radar observations. We favor a nucleus shape model composed of 2 contact spheres with respective radii of 2.7+/-0.1 km and 1.1+/-0.1 km and a pole orientation with RA=285+/-12 deg and DEC=+20+/-5 deg. The nucleus has a thermal inertia in the range 0-100 J/K/m^2/s^0.5 and a R-band geometric albedo of 0.042+/-0.008. The water production rate amounts to 1.1+/-0.2x10^28~molecules/s at 1.6 AU from the Sun pre-perihelion, which corresponds to an active fraction of 9%. At the same distance, the $epsilon f rho$ quantity amounts to 310+/-34 cm at 1.6~AU, and reaches 325+/-36 cm at 2.2~AU post-perihelion. The dust grain temperature is estimated to 258+/-10 K, which is 37 K larger than the thermal equilibrium temperature at 1.6 AU. This indicates that the dust grains contributing to the thermal infrared flux have a typical size of 10 $mu$m. The dust spectrum exhibits broad emissions around 10 $mu$m (1.5-sigma confidence level) and 18 $mu$m (5-sigma confidence level) that we attribute to amorphous pyroxene.



rate research

Read More

We have used the Spitzer 22-um peakup array to observe thermal emission from the nucleus and trail of comet 103P/Hartley 2, the target of NASAs Deep Impact Extended mission. The comet was observed on UT 2008 August 12 and 13, while the comet was 5.5 AU from the Sun. We obtained two 200-frame sets of photometric imaging over a 2.7-hour period. To within the errors of the measurement, we find no detection of any temporal variation between the two images. The comet showed extended emission beyond a point source in the form of a faint trail directed along the comets anti-velocity vector. After modeling and removing the trail emission, a NEATM model for the nuclear emission with beaming parameter of 0.95 +/- 0.20 indicates a small effective radius for the nucleus of 0.57 +/- 0.08 km and low geometric albedo 0.028 +/- 0.009 (1 sigma). With this nucleus size and a water production rate of 3 x 10^28 molecules s-1 at perihelion (AHearn et al. 1995) we estimate that ~100% of the surface area is actively emitting volatile material at perihelion. Reports of emission activity out to ~5 AU (Lowry et al. 2001, Snodgrass et al. 2008) support our finding of a highly active nuclear surface. Compared to Deep Impacts first target, comet 9P/Tempel 1, Hartley 2s nucleus is one-fifth as wide (and about one-hundredth the mass) while producing a similar amount of outgassing at perihelion with about 13 times the active surface fraction. Unlike Tempel 1, it should be highly susceptible to jet driven spin-up torques, and so could be rotating at a much higher frequency. Barring a catastrophic breakup or major fragmentation event, the comet should be able to survive up to another 100 apparitions (~700 yrs) at its current rate of mass loss.
High resolution spectra of Comet 8P/Tuttle were obtained in the frequency range 3440.6-3462.6 cm-1 on 3 January 2008 UT using CGS4 with echelle grating on UKIRT. In addition to recording strong solar pumped fluorescent (SPF) lines of H2O, the long integration time (152 miutes on target) enabled eight weaker H2O features to be assigned, most of which had not previously been identified in cometary spectra. These transitions, which are from higher energy upper states, are similar in character to the so-called SH lines recorded in the post Deep Impact spectrum of comet Tempel 1 (Barber et al., 2007). We have identified certain characteristics that these lines have in common, and which in addition to helping to define this new class of cometary line, give some clues to the physical processes involved in their production. Finally, we derive an H2O rotational temperature of 62+/- K and a water production rate of (1.4+/-0.3)E28 molecules/s.
We have used the Spitzer Space Telescope Infrared Spectrograph (IRS) to observe the 5-37 micron thermal emission of comet 73P/Schwassmann-Wachmann 3 (SW3), components B and C. We obtained low spectral resolution (R ~ 100) data over the entire wavelength interval, along with images at 16 and 22 micron. These observations provided an unprecedented opportunity to study nearly pristine material from the surface and what was until recently the interior of an ecliptic comet - cometary surface having experienced only two prior perihelion passages, and including material that was totally fresh. The spectra were modeled using a variety of mineral types including both amorphous and crystalline components. We find that the degree of silicate crystallinity, ~ 35%, is somewhat lower than most other comets with strong emission features, while its abundance of amorphous carbon is higher. Both suggest that SW3 is among the most chemically primitive solar system objects yet studied in detail, and that it formed earlier or farther from the sun than the bulk of the comets studied so far. The similar dust compositions of the two fragments suggests that these are not mineralogically heterogeneous, but rather uniform throughout their volumes. Atomic abundances derived from the spectral models indicates a depletion of O compared to solar photospheric values, despite the inclusion of water ice and gas in the models. Atomic C may be solar or slightly sub-solar, but its abundance is complicated by the potential contribution of spectrally featureless mineral species to the portion of the spectra most sensitive to the derication of the C abundance. We find a relatively high bolometric albedo, ~ 0.13 for the dust, considering the large amount of dark carbonaceous material, but consistent with the presence of abundant small particles and strong emission features.
We present results for Chandra observations of comets, 17P/Holmes (17P) and 8P/Tuttle (8P). 17P was observed for 30 ksec right after its major outburst, on 31 Oct 2007 (10:07 UT) and comet 8P/Tuttle was observed in 2008 January for 47 ksec. During the two Chandra observations, 17P was producing at least 100 times more water than 8P but was 2.2 times further away from the Sun. Also, 17P is the first comet observed at high latitude (+19.1 degrees) during solar minimum, while 8P was observed at a lower solar latitude (3.4 degrees). The X-ray spectrum of 17P is unusually soft with little significant emission at energies above 500 eV. Depending on our choice of background, we derive a 300 to 1000 eV flux of 0.5 to 4.5 x 10^-13 ergs/cm2/sec, with over 90% of the emission in the 300 to 400 eV range. This corresponds to an X-ray luminosity between 0.4 to 3.3 x 10^15 ergs/sec. 17Ps lack of X-rays in the 400 to 1000 eV range, in a simple picture, may be attributed to the polar solar wind, which is depleted in highly charged ions. 8P/Tuttle was much brighter, with an average count rate of 0.20 counts/s in the 300 to 1000 eV range. We derive an average X-ray flux in this range of 9.4 x 10^-13 ergs/cm2/sec and an X-ray luminosity for the comet of 1.7 x 10^14 ergs/sec. The light curve showed a dramatic decrease in flux of over 60% between observations on January 1st and 4th. When comparing outer regions of the coma to inner regions, its spectra showed a decrease in ratios of CVI/CV, OVIII/OVII, as predicted by recent solar wind charge exchange emission models. There are remarkable differences between the X-ray emission from these two comets, further demonstrating the qualities of cometary X-ray observations, and solar wind charge exchange emission in more general as a means of remote diagnostics of the interaction of astrophysical plasmas.
Near-Sun Comet C/2019 Y4 (ATLAS) is the first member of a long-period comet group observed to disintegrate well before perihelion. Here we present our investigation into this disintegration event using images obtained in a 3-day {it Hubble Space Telescope} (hst) campaign. We identify two fragment clusters produced by the initial disintegration event, corresponding to fragments C/2019 Y4-A and C/2019 Y4-B identified in ground-based data. These two clusters started with similar integrated brightness, but exhibit different evolutionary behavior. C/2019 Y4-A was much shorter-lived compared to C/2019 Y4-B, and showed signs of significant mass-loss and changes in size distribution throughout the 3-day campaign. The cause of the initial fragmentation is undetermined by the limited evidence but crudely compatible with either the spin-up disruption of the nucleus or runaway sublimation of sub-surface supervolatile ices, either of which would lead to the release of a large amount of gas as inferred from the significant bluing of the comet observed shortly before the disintegration. Gas can only be produced by the sublimation of volatile ices, which must have survived at least one perihelion passage at a perihelion distance of $q=0.25$~au. We speculate that Comet ATLAS is derived from the ice-rich interior of a non-uniform, kilometer-wide progenitor that split during its previous perihelion. This suggests that comets down to a few kilometers in diameter can still possess complex, non-uniform interiors that can protect ices against intense solar heating.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا