Do you want to publish a course? Click here

NuSTAR Discovery of a Compton-thick Dust-obscured Galaxy WISE J0825+3002

114   0   0.0 ( 0 )
 Added by Yoshiki Toba
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of a Compton-thick (CT) dust-obscured galaxy (DOG) at $z$ = 0.89, WISE J082501.48+300257.2 (WISE0825+3002), observed by Nuclear Spectroscopic Telescope Array (NuSTAR). X-ray analysis with the XCLUMPY model revealed that hard X-ray luminosity in the rest-frame 2-10 keV band of WISE0825+3002 is $L_{rm X}$ (2-10 keV) = $4.2^{+2.8}_{-1.6} times 10^{44}$ erg s$^{-1}$ while its hydrogen column density is $N_{rm H}$ = $1.0^{+0.8}_{-0.4} times 10^{24}$ cm$^{-2}$, indicating that WISE0825+3002 is a mildly CT active galactic nucleus (AGN). We performed the spectral energy distribution (SED) fitting with CIGALE to derive its stellar mass, star formation rate, and infrared luminosity. The estimated Eddington ratio based on stellar mass and integration of the best-fit SED of AGN component is $lambda_{rm Edd}$ = 0.70, which suggests that WISE0825+3002 harbors an actively growing black hole behind a large amount of gas and dust. We found that the relationship between luminosity ratio of X-ray and 6 $mu$m, and Eddington ratio follows an empirical relation for AGNs reported by Toba et al. (2019a).



rate research

Read More

We present the joint Chandra, XMM-Newton and NuSTAR analysis of two nearby Seyfert galaxies, NGC 3081 and ESO 565-G019. These are the only two having Chandra data in a larger sample of ten low redshift ($z le 0.05$), candidates Compton-thick Active Galactic Nuclei (AGN) selected in the 15-150 keV band with Swift-BAT that were still lacking NuSTAR data. Our spectral analysis, performed using physically-motivated models, provides an estimate of both the line-of-sight (l.o.s.) and average (N$_{H,S}$) column densities of the two torii. NGC 3081 has a Compton-thin l.o.s. column density N$_{H,z}$=[0.58-0.62] $times 10^{24}$cm$^{-2}$, but the N$_{H,S}$, beyond the Compton-thick threshold (N$_{H,S}$=[1.41-1.78] $times 10^{24}$cm$^{-2}$), suggests a patchy scenario for the distribution of the circumnuclear matter. ESO 565-G019 has both Compton-thick l.o.s. and N$_{H,S}$ column densities (N$_{H,z}>$2.31 $times 10^{24}$cm$^{-2}$ and N$_{H,S} >$2.57 $times 10^{24}$cm$^{-2}$, respectively). The use of physically-motivated models, coupled with the broad energy range covered by the data (0.6-70 keV and 0.6-40 keV, for NGC 3081 and ESO 565-G019, respectively) allows us to constrain the covering factor of the obscuring material, which is C$_{TOR}$=[0.63-0.82] for NGC 3081, and C$_{TOR}$=[0.39-0.65] for ESO 565-G019.
78 - C. Ricci , R. J. Assef , D. Stern 2016
Hot, Dust-Obscured Galaxies (Hot DOGs), selected from the WISE all sky infrared survey, host some of the most powerful Active Galactic Nuclei (AGN) known, and might represent an important stage in the evolution of galaxies. Most known Hot DOGs are at $z> 1.5$, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 Hot DOG candidates at $zsim 1$, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift $z=1.009$, and an SED similar to higher redshift Hot DOGs for one of these objects, WISE J1036+0449 ($L_{rm,Bol}simeq 8times 10^{46}rm,erg,s^{-1}$), using data from Keck/LRIS and NIRSPEC, SDSS, and CSO. We find evidence of a broadened component in MgII, which, if due to the gravitational potential of the supermassive black hole, would imply a black hole mass of $M_{rm,BH}simeq 2 times 10^8 M_{odot}$, and an Eddington ratio of $lambda_{rm,Edd}simeq 2.7$. WISE J1036+0449 is the first Hot DOG detected by NuSTAR, and the observations show that the source is heavily obscured, with a column density of $N_{rm,H}simeq(2-15)times10^{23}rm,cm^{-2}$. The source has an intrinsic 2-10 keV luminosity of $sim 6times 10^{44}rm,erg,s^{-1}$, a value significantly lower than that expected from the mid-infrared/X-ray correlation. We also find that the other Hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of Hot DOGs. Hot DOGs at $zlesssim1$ could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.
A primary aim of the Nuclear Spectroscopic Telescope Array (NuSTAR) mission is to find and characterize heavily obscured Active Galactic Nuclei (AGNs). Based on mid-infrared photometry from the Wide-Field Infrared Survey Explorer (WISE) and optical photometry from the Sloan Digital Sky Surveys, we have selected a large population of luminous obscured AGN (i.e., obscured quasars). Here we report NuSTAR observations of four WISE-selected heavily obscured quasars for which we have optical spectroscopy from the Southern African Large Telescope and W. M. Keck Observatory. Optical diagnostics confirm that all four targets are AGNs. With NuSTAR hard X-ray observations, three of the four objects are undetected, while the fourth has a marginal detection. We confirm that these objects have observed hard X-ray (10-40 keV) luminosities at or below ~ 10^43 erg s^-1. We compare X-ray and IR luminosities to obtain estimates of the hydrogen column densities (N_H) based on the suppression of the hard X-ray emission. We estimate N_H of these quasars to be at or larger than 10^25 cm^-2, confirming that WISE and optical selection can identify very heavily obscured quasars that may be missed in X-ray surveys, and do not contribute significantly to the cosmic X-ray background. From the optical Balmer decrements, we found that our three extreme obscured targets lie in highly reddened host environments. This galactic extinction is not adequate to explain the more obscured AGN, but it may imply a different scale of obscuration in the galaxy.
We analyse high-quality NuSTAR observations of the local (z = 0.011) Seyfert 2 active galactic nucleus (AGN) IC 3639, in conjunction with archival Suzaku and Chandra data. This provides the first broadband X-ray spectral analysis of the source, spanning nearly two decades in energy (0.5-30 keV). Previous X-ray observations of the source below 10 keV indicated strong reflection/obscuration on the basis of a pronounced iron fluorescence line at 6.4 keV. The hard X-ray energy coverage of NuSTAR, together with self-consistent toroidal reprocessing models, enables direct broadband constraints on the obscuring column density of the source. We find the source to be heavily Compton-thick (CTK) with an obscuring column in excess of $3.6times10^{24}$ cm$^{-2}$, unconstrained at the upper end. We further find an intrinsic 2-10 keV luminosity of $textrm{log}_{10}(L_{textrm{2-10 keV}} textrm{[erg s}^{-1}]) = 43.4^{+0.6}_{-1.1}$ to 90% confidence, almost 400 times the observed flux, and consistent with various multi-wavelength diagnostics. Such a high intrinsic to observed flux ratio in addition to an Fe-K$alpha$ fluorescence line equivalent width exceeding 2 keV is extreme amongst known bona fide CTK AGN, which we suggest are both due to the high level of obscuration present around IC 3639. Our study demonstrates that broadband spectroscopic modelling with NuSTAR enables large corrections for obscuration to be carried out robustly, and emphasises the need for improved modelling of AGN tori showing intense iron fluorescence.
We present the discovery of an extremely-luminous dust-obscured galaxy (DOG) at $z_{rm spec}$ = 3.703, WISE J101326.25+611220.1. This DOG is selected as a candidate of extremely-luminous infrared (IR) galaxies based on the photometry from the Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer. In order to derive its accurate IR luminosity, we perform follow-up observations at 450 and 850 $mu$m using the Submillimetre Common User Bolometer Array 2 on the James Clerk Maxwell Telescope, and at 870 and 1300 $mu$m using the Submillimeter Array, which enable us to pin down its IR Spectral Energy Distribution (SED). We perform SED fitting using 14 photometric data (0.4 - 1300 $mu$m) and estimate its IR luminosity, $L_{rm IR}$ (8-1000 $mu$m), to be $2.2^{+1.5}_{-1.0}$ $times 10^{14}$ $L_{odot}$, making it one of the most luminous IR galaxies in the Universe. The energy contribution from an active galactic nucleus (AGN) to the IR luminosity is $94^{+6}_{-20}$%, which indicates it is an AGN-dominated DOG. On the other hand, its stellar mass ($M_*$) and star formation rate (SFR) are $log ,(M_ast/M_{odot})$ = $11.2^{+0.6}_{-0.2}$ and $log ,({rm SFR}/M_{odot},{rm yr}^{-1}$) = $3.1^{+0.2}_{-0.1}$, respectively, which means that this DOG can be considered as a starburst galaxy in $M_*$--SFR plane. This extremely-luminous DOG shows significant AGN and star forming activity that provides us an important laboratory to probe the maximum phase of the co-evolution of galaxies and supermassive black holes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا