No Arabic abstract
Currently, dual-energy X-ray phase contrast imaging is usually conducted with an X-ray Talbot-Lau interferometer. However, in this system, the two adopted energy spectra have to be chosen carefully in order to match well with the phase grating. For example, the accelerating voltages of the X-ray tube are supposed to be respectively set as 40 kV and 70 kV, with other energy spectra being practically unusable for dual energy imaging. This system thus has low flexibility and maneuverability in practical applications. In this work, dual energy X-ray phase-contrast imaging is performed in a grating-based non-interferometric imaging system rather than in a Talbot-Lau interferometer. The advantage of this system is that, theoretically speaking, any two separated energy spectra can be utilized to perform dual energy X-ray phase-contrast imaging. The preliminary experimental results show that dual-energy X-ray phase contrast imaging is successfully performed when the accelerating voltages of the X-ray tube are successively set as 40 kV and 50 kV. Our work increases the flexibility and maneuverability when employing dual-energy X-ray phase-contrast imaging in medical diagnoses and nondestructive tests.
Two-dimensional Talbot array illuminators (TAIs) were designed, fabricated, and evaluated for high-resolution high-contrast x-ray phase imaging of soft tissue at 10-20keV. The TAIs create intensity modulations with a high compression ratio on the micrometer scale at short propagation distances. Their performance was compared with various other wavefront markers in terms of period, visibility, flux efficiency and flexibility to be adapted for limited beam coherence and detector resolution. Differential x-ray phase contrast and dark-field imaging were demonstrated with a one-dimensional, linear phase stepping approach yielding two-dimensional phase sensitivity using Unified Modulated Pattern Analysis (UMPA) for phase retrieval. The method was employed for x-ray phase computed tomography reaching a resolution of 3$mu$m on an unstained murine artery. It opens new possibilities for three-dimensional, non-destructive, and quantitative imaging of soft matter such as virtual histology. The phase modulators can also be used for various other x-ray applications such as dynamic phase imaging, super-resolution structured illumination microscopy, or wavefront sensing.
Dual-energy subtraction imaging (DES) is a method to improve the detectability of contrast agents over a lumpy background. Two images, acquired at x-ray energies above and below an absorption edge of the agent material, are logarithmically subtracted, resulting in suppression of the signal from the tissue background and a relative enhancement of the signal from the agent. Although promising, DES is still not widely used in clinical practice. One reason may be the need for two distinctly separated x-ray spectra that are still close to the absorption edge, realized through dual exposures which may introduce motion unsharpness. In this study, electronic spectrum-splitting with a silicon-strip detector is theoretically and experimentally investigated for a mammography model with iodinated contrast agent. Comparisons are made to absorption imaging and a near-ideal detector using a signal-to-noise ratio that includes both statistical and structural noise. Similar to previous studies, heavy absorption filtration was needed to narrow the spectra at the expense of a large reduction in x-ray flux. Therefore, potential improvements using a chromatic multi-prism x-ray lens (MPL) for filtering were evaluated theoretically. The MPL offers a narrow tunable spectrum, and we show that the image quality can be improved compared to conventional filtering methods.
Phase-contrast X-ray imaging can improve the visibility of weakly absorbing objects (e.g. soft tissues) by an order of magnitude or more compared to conventional radiographs. Previously, it has been shown that combining phase retrieval with computed tomography (CT) can increase the signal-to-noise ratio (SNR) by up to two orders of magnitude over conventional CT at the same radiation dose, without loss of image quality. Our experiments reveal that as radiation dose decreases, the relative improvement in SNR increases. We discovered this enhancement can be traded for a reduction in dose greater than the square of the gain in SNR. Upon reducing the dose 300 fold, the phase-retrieved SNR was still almost 10 times larger than the absorption contrast data. This reveals the potential for dose reduction factors in the tens of thousands without loss in image quality, which would have a profound impact on medical and industrial imaging applications.
X-ray phase-contrast imaging has experienced rapid development over the last few decades, and in this technology, the phase modulation strategy of phase-stepping is used most widely to measure the samples phase signal. However, because of its discontinuous nature, phase-stepping has the defects of worse mechanical stability and high exposure dose, which greatly hinder its wide application in dynamic phase measurement and potential clinical applications. In this manuscript, we demonstrate preliminary research on the use of integrating-bucket phase modulation method to retrieve the phase information in grating-based X-ray phase-contrast imaging. Experimental results showed that our proposed method can be well employed to extract the differential phase-contrast image, compared with the current mostly used phase-stepping strategy, advantage of integrating-bucket phase modulation technique is that fast measurement and low dose are promising.
We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 {mu}m (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphors 80-{mu}m value. Potential fiber-optic plate depth-of-focus aspects and 33-{mu}m diameter carbon fiber imaging are also addressed.