No Arabic abstract
The bandwidth theorem [Mathematische Annalen, 343(1):175--205, 2009] states that any $n$-vertex graph $G$ with minimum degree $(frac{k-1}{k}+o(1))n$ contains all $n$-vertex $k$-colourable graphs $H$ with bounded maximum degree and bandwidth $o(n)$. In [arXiv:1612.00661] a random graph analogue of this statement is proved: for $pgg (frac{log n}{n})^{1/Delta}$ a.a.s. each spanning subgraph $G$ of $G(n,p)$ with minimum degree $(frac{k-1}{k}+o(1))pn$ contains all $n$-vertex $k$-colourable graphs $H$ with maximum degree $Delta$, bandwidth $o(n)$, and at least $C p^{-2}$ vertices not contained in any triangle. This restriction on vertices in triangles is necessary, but limiting. In this paper we consider how it can be avoided. A special case of our main result is that, under the same conditions, if additionally all vertex neighbourhoods in $G$ contain many copies of $K_Delta$ then we can drop the restriction on $H$ that $Cp^{-2}$ vertices should not be in triangles.
We show that, in almost every $n$-vertex random directed graph process, a copy of every possible $n$-vertex oriented cycle will appear strictly before a directed Hamilton cycle does, except of course for the directed cycle itself. Furthermore, given an arbitrary $n$-vertex oriented cycle, we determine the sharp threshold for its appearance in the binomial random directed graph. These results confirm, in a strong form, a conjecture of Ferber and Long.
We extend a recent argument of Kahn, Narayanan and Park (Proceedings of the AMS, to appear) about the threshold for the appearance of the square of a Hamilton cycle to other spanning structures. In particular, for any spanning graph, we give a sufficient condition under which we may determine its threshold. As an application, we find the threshold for a set of cyclically ordered copies of $C_4$ that span the entire vertex set, so that any two consecutive copies overlap in exactly one edge and all overlapping edges are disjoint. This answers a question of Frieze. We also determine the threshold for edge-overlapping spanning $K_r$-cycles.
We prove a `resilience version of Diracs theorem in the setting of random regular graphs. More precisely, we show that, whenever $d$ is sufficiently large compared to $varepsilon>0$, a.a.s. the following holds: let $G$ be any subgraph of the random $n$-vertex $d$-regular graph $G_{n,d}$ with minimum degree at least $(1/2+varepsilon)d$. Then $G$ is Hamiltonian. This proves a conjecture of Ben-Shimon, Krivelevich and Sudakov. Our result is best possible: firstly, the condition that $d$ is large cannot be omitted, and secondly, the minimum degree bound cannot be improved.
We prove that for each $Dge 2$ there exists $c>0$ such that whenever $ble cbig(tfrac{n}{log n}big)^{1/D}$, in the $(1:b)$ Maker-Breaker game played on $E(K_n)$, Maker has a strategy to guarantee claiming a graph $G$ containing copies of all graphs $H$ with $v(H)le n$ and $Delta(H)le D$. We show further that the graph $G$ guaranteed by this strategy also contains copies of any graph $H$ with bounded maximum degree and degeneracy at most $tfrac{D-1}{2}$. This lower bound on the threshold bias is sharp up to the $log$-factor when $H$ consists of $tfrac{n}{3}$ vertex-disjoint triangles or $tfrac{n}{4}$ vertex-disjoint $K_4$-copies.
In 2001, Komlos, Sarkozy and Szemeredi proved that, for each $alpha>0$, there is some $c>0$ and $n_0$ such that, if $ngeq n_0$, then every $n$-vertex graph with minimum degree at least $(1/2+alpha)n$ contains a copy of every $n$-vertex tree with maximum degree at most $cn/log n$. We prove the corresponding result for directed graphs. That is, for each $alpha>0$, there is some $c>0$ and $n_0$ such that, if $ngeq n_0$, then every $n$-vertex directed graph with minimum semi-degree at least $(1/2+alpha)n$ contains a copy of every $n$-vertex oriented tree whose underlying maximum degree is at most $cn/log n$. As with Komlos, Sarkozy and Szemeredis theorem, this is tight up to the value of $c$. Our result improves a recent result of Mycroft and Naia, which requires the oriented trees to have underlying maximum degree at most $Delta$, for any constant $Delta$ and sufficiently large $n$. In contrast to the previous work on spanning trees in dense directed or undirected graphs, our methods do not use Szemeredis regularity lemma.