No Arabic abstract
Dependency context-based word embedding jointly learns the representations of word and dependency context, and has been proved effective in aspect term extraction. In this paper, we design the positional dependency-based word embedding (PoD) which considers both dependency context and positional context for aspect term extraction. Specifically, the positional context is modeled via relative position encoding. Besides, we enhance the dependency context by integrating more lexical information (e.g., POS tags) along dependency paths. Experiments on SemEval 2014/2015/2016 datasets show that our approach outperforms other embedding methods in aspect term extraction.
Aspect term extraction is one of the important subtasks in aspect-based sentiment analysis. Previous studies have shown that using dependency tree structure representation is promising for this task. However, most dependency tree structures involve only one directional propagation on the dependency tree. In this paper, we first propose a novel bidirectional dependency tree network to extract dependency structure features from the given sentences. The key idea is to explicitly incorporate both representations gained separately from the bottom-up and top-down propagation on the given dependency syntactic tree. An end-to-end framework is then developed to integrate the embedded representations and BiLSTM plus CRF to learn both tree-structured and sequential features to solve the aspect term extraction problem. Experimental results demonstrate that the proposed model outperforms state-of-the-art baseline models on four benchmark SemEval datasets.
This paper focuses on two related subtasks of aspect-based sentiment analysis, namely aspect term extraction and aspect sentiment classification, which we call aspect term-polarity co-extraction. The former task is to extract aspects of a product or service from an opinion document, and the latter is to identify the polarity expressed in the document about these extracted aspects. Most existing algorithms address them as two separate tasks and solve them one by one, or only perform one task, which can be complicated for real applications. In this paper, we treat these two tasks as two sequence labeling problems and propose a novel Dual crOss-sharEd RNN framework (DOER) to generate all aspect term-polarity pairs of the input sentence simultaneously. Specifically, DOER involves a dual recurrent neural network to extract the respective representation of each task, and a cross-shared unit to consider the relationship between them. Experimental results demonstrate that the proposed framework outperforms state-of-the-art baselines on three benchmark datasets.
One key task of fine-grained sentiment analysis on reviews is to extract aspects or features that users have expressed opinions on. This paper focuses on supervised aspect extraction using a modified CNN called controlled CNN (Ctrl). The modified CNN has two types of control modules. Through asynchronous parameter updating, it prevents over-fitting and boosts CNNs performance significantly. This model achieves state-of-the-art results on standard aspect extraction datasets. To the best of our knowledge, this is the first paper to apply control modules to aspect extraction.
The notion of word embedding plays a fundamental role in natural language processing (NLP). However, pre-training word embedding for very large-scale vocabulary is computationally challenging for most existing methods. In this work, we show that with merely a small fraction of contexts (Q-contexts)which are typical in the whole corpus (and their mutual information with words), one can construct high-quality word embedding with negligible errors. Mutual information between contexts and words can be encoded canonically as a sampling state, thus, Q-contexts can be fast constructed. Furthermore, we present an efficient and effective WEQ method, which is capable of extracting word embedding directly from these typical contexts. In practical scenarios, our algorithm runs 11$sim$13 times faster than well-established methods. By comparing with well-known methods such as matrix factorization, word2vec, GloVeand fasttext, we demonstrate that our method achieves comparable performance on a variety of downstream NLP tasks, and in the meanwhile maintains run-time and resource advantages over all these baselines.
Aspect term extraction aims to extract aspect terms from review texts as opinion targets for sentiment analysis. One of the big challenges with this task is the lack of sufficient annotated data. While data augmentation is potentially an effective technique to address the above issue, it is uncontrollable as it may change aspect words and aspect labels unexpectedly. In this paper, we formulate the data augmentation as a conditional generation task: generating a new sentence while preserving the original opinion targets and labels. We propose a masked sequence-to-sequence method for conditional augmentation of aspect term extraction. Unlike existing augmentation approaches, ours is controllable and allows us to generate more diversified sentences. Experimental results confirm that our method alleviates the data scarcity problem significantly. It also effectively boosts the performances of several current models for aspect term extraction.