Spatio-temporal behavior of magnetohydrodynamic fluctuations with cross-helicity and background magnetic field


Abstract in English

We study the spatio-temporal behavior of the Elsasser variables describing magnetic and velocity field fluctuations, using direct numerical simulations of three-dimensional magnetohydrodynamic turbulence. We consider cases with relatively small, intermediate, and large values of a mean background magnetic field, and with null, small, and high cross-helicity (correlations between the velocity and the magnetic field). Wavenumber-dependent time correlation functions are computed for the different simulations. From these correlation functions, the decorrelation time is computed and compared with different theoretical characteristic times: the local non-linear time, the random-sweeping time, and the Alfvenic time. It is found that decorrelation times are dominated by sweeping effects for low values of the mean magnetic field and for low values of the cross-helicity, while for large values of the background field or of the cross-helicity and for wave vectors sufficiently aligned with the guide field, decorrelation times are controlled by Alfvenic effects. Finally, we observe counter-propagation of Alfvenic fluctuations due to reflections produced by inhomogeneities in the total magnetic field. This effect becomes more prominent in flows with large cross-helicity, strongly modifying the propagation of waves in turbulent magnetohydrodynamic flows.

Download