Exponential growth and continuous phase transitions for the contact process on trees


Abstract in English

We study the supercritical contact process on Galton-Watson trees and periodic trees. We prove that if the contact process survives weakly then it dominates a supercritical Crump-Mode-Jagers branching process. Hence the number of infected sites grows exponentially fast. As a consequence we conclude that the contact process dies out at the critical value $lambda_1$ for weak survival, and the survival probability $p(lambda)$ is continuous with respect to the infection rate $lambda$. Applying this fact, we show the contact process on a general periodic tree experiences two phase transitions in the sense that $lambda_1<lambda_2$, which confirms a conjecture of Staceys cite{Stacey}. We also prove that if the contact process survives strongly at $lambda$ then it survives strongly at a $lambda<lambda$, which implies that the process does not survive strongly at the critical value $lambda_2$ for strong survival.

Download