Hybrid Microwave Radiation Patterns for High-Fidelity Quantum Gates with Trapped Ions


Abstract in English

We present a method that combines continuous and pulsed microwave radiation patterns to achieve robust interactions among hyperfine trapped ions placed in a magnetic field gradient. More specifically, our scheme displays continuous microwave drivings with modulated phases, phase flips, and $pi$ pulses. This leads to high-fidelity entangling gates which are resilient against magnetic field fluctuations, changes on the microwave amplitudes, and crosstalk effects. Our protocol runs with arbitrary values of microwave power, which includes the technologically relevant case of low microwave intensities. We demonstrate the performance of our method with detailed numerical simulations that take into account the main sources of decoherence.

Download