No Arabic abstract
We present calculations for the shear viscosity of the hot and dense quark-gluon plasma (QGP) using the partonic scattering cross sections as a function of temperature $T$ and baryon chemical potential $mu_B$ from the dynamical quasiparticle model (DQPM) that is matched to reproduce the equation of state of the partonic system above the deconfinement temperature $T_c$ from lattice QCD. To this aim we calculate the collisional widths for the partonic degrees of freedom at finite $T$ and $mu_B$ in the time-like sector and conclude that the quasiparticle limit holds sufficiently well. Furthermore, the ratio of shear viscosity $eta$ over entropy density $s$, i.e. $eta/s$, is evaluated using these collisional widths and are compared to lQCD calculations for $mu_B$ = 0 as well. We find that the ratio $eta/s$ is in agreement with the results of calculations within the original DQPM on the basis of the Kubo formalism. Furthermore, there is only a very modest change of $eta/s$ with the baryon chemical $mu_B$ as a function of the scaled temperature $T/T_c(mu_B)$.
We compute the transport coefficients, namely, the coefficients of shear and bulk viscosity as well as thermal conductivity for hot and dense quark matter. The calculations are performed within the Nambu- Jona Lasinio (NJL) model. The estimation of the transport coefficients is made using a quasiparticle approach of solving the Boltzmann kinetic equation within the relaxation time approximation. The transition rates are calculated in a manifestly covariant manner to estimate the thermal-averaged cross sections for quark-quark and quark-antiquark scattering. The calculations are performed for finite chemical potential also. Within the parameters of the model, the ratio of shear viscosity to entropy density has a minimum at the Mott transition temperature. At vanishing chemical potential, the ratio of bulk viscosity to entropy density, on the other hand, decreases with temperature with a sharp decrease near the critical temperature, and vanishes beyond it. At finite chemical potential, however, it increases slowly with temperature beyond the Mott temperature. The coefficient of thermal conductivity also shows a minimum at the critical temperature.
We present a general approach to incorporate hadronic as well as quark degrees of freedom in a unified approach. This approach implements the correct degrees of freedom at high as well as low temperatures and densities. An effective Polyakov loop field serves as the order parameter for deconfinement. We employ a well-tested hadronic flavor-SU(3) model based on a chirally symmetric formulation that reproduces properties of ground state nuclear matter and yields good descriptions of nuclei and hypernuclei. Excluded volume effects simulating the finite size of the hadrons drive the transition to quarks at high temperatures and densities. We study the phase structure of the model and the transition to the quark gluon plasma and compare results to lattice gauge calculations.
We report on broadly based systematic investigations of the modeling components for open heavy-flavor diffusion and energy loss in strongly interacting matter in their application to heavy-flavor observables in high-energy heavy-ion collisions, conducted within an EMMI Rapid Reaction Task Force framework. Initial spectra including cold-nuclear-matter effects, a wide variety of space-time evolution models, heavy-flavor transport coefficients, and hadronization mechanisms are scrutinized in an effort to quantify pertinent uncertainties in the calculations of nuclear modification factors and elliptic flow of open heavy-flavor particles in nuclear collisions. We develop procedures for error assessments and criteria for common model components to improve quantitative estimates for the (low-momentum) heavy-flavor diffusion coefficient as a long-wavelength characteristic of QCD matter as a function of temperature, and for energy loss coefficients of high-momentum heavy-flavor particles.
We calculate transport coefficients of the quark-gluon plasma (QGP) within the dynamical quasiparticle model (DQPM) by explicitly computing the parton interaction rates as a function of temperature $T$ and baryon chemical potential $mu_B$ on the basis of the DQPM couplings and partonic propagators. The latter are extracted from lattice QCD by matching the equation of state, entropy density and energy density at $mu_B$= 0. For baryon chemical potentials $0 leq mu_B leq 500 MeV$ we employ a scaling Ansatz for the effective coupling which was shown before to lead to thermodynamic consistent results in this range. We compute the ratio of the shear and bulk viscosities to the entropy density, i.e. $eta/s$ and $zeta/s$, the electric conductivity $sigma_0/T$ as well as the baryon diffusion coefficient $kappa_B$ and compare to related approaches from the literature. We find that the ratios $eta/s$ and $zeta/s$ as well as $sigma_0/T$ are in accord with the results from lattice QCD at $mu_B$=0 and only weakly depend on the ratio $T/T_c(mu_B)$ where $T_c(mu_B)$ denotes the critical temperature at finite baryon chemical potential.
Within the framework of a multi-phase transport model, we study the equation of state and pressure anisotropy of the hot dense matter produced in central relativistic heavy ion collisions. Both are found to depend on the hadronization scheme and scattering cross sections used in the model. Furthermore, only partial thermalization is achieved in the produced matter as a result of its fast expansion.