A Cooperative Coordination Solver for Travelling Thief Problems


Abstract in English

The travelling thief problem (TTP) is a representative of multi-component optimisation problems with interacting components. TTP combines the knapsack problem (KP) and the travelling salesman problem (TSP). A thief performs a cyclic tour through a set of cities, and pursuant to a collection plan, collects a subset of items into a rented knapsack with finite capacity. The aim is to maximise profit while minimising renting cost. Existing TTP solvers typically solve the KP and TSP components in an interleaved manner: the solution of one component is kept fixed while the solution of the other component is modified. This suggests low coordination between solving the two components, possibly leading to low quality TTP solutions. The 2-OPT heuristic is often used for solving the TSP component, which reverses a segment in the tour. Within TTP, 2-OPT does not take into account the collection plan, which can result in a lower objective value. This in turn can result in the tour modification to be rejected by a solver. We propose an expanded form of 2-OPT to change the collection plan in coordination with tour modification. Items regarded as less profitable and collected in cities located earlier in the reversed segment are substituted by items that tend to be more profitable and not collected in cities located later in the reversed segment. The collection plan is further changed through a modified form of the hill-climbing bit-flip search, where changes in the collection state are only permitted for boundary items, which are defined as lowest profitable collected items or highest profitable uncollected items. This restriction reduces the time spent on the KP component, allowing more tours to be evaluated by the TSP component within a time budget. The proposed approaches form the basis of a new cooperative coordination solver, which is shown to outperform several state-of-the-art TTP solvers.

Download