No Arabic abstract
The notion of cross intersecting set pair system of size $m$, $Big({A_i}_{i=1}^m, {B_i}_{i=1}^mBig)$ with $A_icap B_i=emptyset$ and $A_icap B_j eemptyset$, was introduced by Bollobas and it became an important tool of extremal combinatorics. His classical result states that $mle {a+bchoose a}$ if $|A_i|le a$ and $|B_i|le b$ for each $i$. Our central problem is to see how this bound changes with the additional condition $|A_icap B_j|=1$ for $i e j$. Such a system is called $1$-cross intersecting. We show that the maximum size of a $1$-cross intersecting set pair system is -- at least $5^{n/2}$ for $n$ even, $a=b=n$, -- equal to $bigl(lfloorfrac{n}{2}rfloor+1bigr)bigl(lceilfrac{n}{2}rceil+1bigr)$ if $a=2$ and $b=nge 4$, -- at most $|cup_{i=1}^m A_i|$, -- asymptotically $n^2$ if ${A_i}$ is a linear hypergraph ($|A_icap A_j|le 1$ for $i e j$), -- asymptotically ${1over 2}n^2$ if ${A_i}$ and ${B_i}$ are both linear hypergraphs.
Three intersection theorems are proved. First, we determine the size of the largest set system, where the system of the pairwise unions is l-intersecting. Then we investigate set systems where the union of any s sets intersect the union of any t sets. The maximal size of such a set system is determined exactly if s+t<5, and asymptotically if s+t>4. Finally, we exactly determine the maximal size of a k-uniform set system that has the above described (s,t)-union-intersecting property, for large enough n.
Let $mathcal{F}$ and $mathcal{G}$ be two $t$-uniform families of subsets over $[k] = {1,2,...,k}$, where $|mathcal{F}| = |mathcal{G}|$, and let $C$ be the adjacency matrix of the bipartite graph whose vertices are the subsets in $mathcal{F}$ and $mathcal{G}$, and there is an edge between $Ain mathcal{F}$ and $B in mathcal{G}$ if and only if $A cap B eq emptyset$. The pair $(mathcal{F},mathcal{G})$ is $q$-almost cross intersecting if every row and column of $C$ has exactly $q$ zeros. We consider $q$-almost cross intersecting pairs that have a circulant intersection matrix $C_{p,q}$, determined by a column vector with $p > 0$ ones followed by $q > 0$ zeros. This family of matrices includes the identity matrix in one extreme, and the adjacency matrix of the bipartite crown graph in the other extreme. We give constructions of pairs $(mathcal{F},mathcal{G})$ whose intersection matrix is $C_{p,q}$, for a wide range of values of the parameters $p$ and $q$, and in some cases also prove matching upper bounds. Specifically, we prove results for the following values of the parameters: (1) $1 leq p leq 2t-1$ and $1 leq q leq k-2t+1$. (2) $2t leq p leq t^2$ and any $q> 0$, where $k geq p+q$. (3) $p$ that is exponential in $t$, for large enough $k$. Using the first result we show that if $k geq 4t-3$ then $C_{2t-1,k-2t+1}$ is a maximal isolation submatrix of size $ktimes k$ in the $0,1$-matrix $A_{k,t}$, whose rows and columns are labeled by all subsets of size $t$ of $[k]$, and there is a one in the entry on row $x$ and column $y$ if and only if subsets $x,y$ intersect.
A family of sets is said to be emph{symmetric} if its automorphism group is transitive, and emph{intersecting} if any two sets in the family have nonempty intersection. Our purpose here is to study the following question: for $n, kin mathbb{N}$ with $k le n/2$, how large can a symmetric intersecting family of $k$-element subsets of ${1,2,ldots,n}$ be? As a first step towards a complete answer, we prove that such a family has size at most [expleft(-frac{c(n-2k)log n}{k( log n - log k)} right) binom{n}{k},] where $c > 0$ is a universal constant. We also describe various combinatorial and algebraic approaches to constructing such families.
Mubayis Conjecture states that if $mathcal{F}$ is a family of $k$-sized subsets of $[n] = {1,ldots,n}$ which, for $k geq d geq 2$, satisfies $A_1 capcdotscap A_d eq emptyset$ whenever $|A_1 cupcdotscup A_d| leq 2k$ for all distinct sets $A_1,ldots,A_d inmathcal{F}$, then $|mathcal{F}|leq binom{n-1}{k-1}$, with equality occurring only if $mathcal{F}$ is the family of all $k$-sized subsets containing some fixed element. This paper proves that Mubayis Conjecture is true for all families that are invariant with respect to shifting; indeed, these families satisfy a stronger version of Mubayis Conjecture. Relevant to the conjecture, we prove a fundamental bijective duality between $(i,j)$-unstable families and $(j,i)$-unstable families. Generalising previous intersecting conditions, we introduce the $(d,s,t)$-conditionally intersecting condition for families of sets and prove general results thereon. We conjecture on the size and extremal structures of families $mathcal{F}inbinom{[n]}{k}$ that are $(d,2k)$-conditionally intersecting but which are not intersecting, and prove results related to this conjecture. We prove fundamental theorems on two $(d,s)$-conditionally intersecting families that generalise previous intersecting families, and we pose an extension of a previous conjecture by Frankl and Furedi on $(3,2k-1)$-conditionally intersecting families. Finally, we generalise a classical result by ErdH{o}s, Ko and Rado by proving tight upper bounds on the size of $(2,s)$-conditionally intersecting families $mathcal{F}subseteq 2^{[n]}$ and by characterising the families that attain these bounds. We extend this theorem for certain parametres as well as for sufficiently large families with respect to $(2,s)$-conditionally intersecting families $mathcal{F}subseteq 2^{[n]}$ whose members have at most a fixed number $u$ members.
Let $G$ be a graph, and let $w$ be a positive real-valued weight function on $V(G)$. For every subset $S$ of $V(G)$, let $w(S)=sum_{v in S} w(v).$ A non-empty subset $S subset V(G)$ is a weighted safe set of $(G,w)$ if, for every component $C$ of the subgraph induced by $S$ and every component $D$ of $G-S$, we have $w(C) geq w(D)$ whenever there is an edge between $C$ and $D$. If the subgraph of $G$ induced by a weighted safe set $S$ is connected, then the set $S$ is called a connected weighted safe set of $(G,w)$. The weighted safe number $mathrm{s}(G,w)$ and connected weighted safe number $mathrm{cs}(G,w)$ of $(G,w)$ are the minimum weights $w(S)$ among all weighted safe sets and all connected weighted safe sets of $(G,w)$, respectively. Note that for every pair $(G,w)$, $mathrm{s}(G,w) le mathrm{cs}(G,w)$ by their definitions. Recently, it was asked which pair $(G,w)$ satisfies the equality and shown that every weighted cycle satisfies the equality. In this paper, we give a complete list of connected bipartite graphs $G$ such that $mathrm{s}(G,w)=mathrm{cs}(G,w)$ for every weight function $w$ on $V(G)$.