Do you want to publish a course? Click here

Optical variability modelling of newly identified blazar candidates behind Magellanic Clouds

144   0   0.0 ( 0 )
 Added by Natalia \\.Zywucka
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results of a variability study in the optical band of 44 newly identified blazar candidates behind the Magellanic Clouds. Our sample contains 27 flat spectrum radio quasars (FSRQs) and 17 BL Lacertae objects (BL Lacs). However, only nine of them are considered as secure blazar candidates, while the classification of the remaining 35 objects is still uncertain. All studied blazar candidates possess infrequently sampled optical light curves (LCs) in I filter provided by the Optical Gravitational Lensing Experiment group. The LCs were analysed with the Lomb-Scargle periodogram, the Hurst exponent $H$, and the $mathcal{A}-mathcal{T}$ plane, to look for blazar-like characteristic features and to study the long-term behaviour of the optical fluxes. The power law (PL) indices of the Lomb-Scargle power spectral density (PSD) of the FSRQ blazar candidates mostly lie in the range (1,2). In case of the BL Lacs they are located in the range (1,1.8). The PL PSD is indicative of a self-affine stochastic process characterised by $H$, underlying the observed variability. We find that the majority of analysed objects have $Hleq 0.5$, indicating short-term memory, whereas four BL Lacs and two FSRQs have $H>0.5$, implying long-term memory. 41 blazar candidates are located in the $mathcal{A}-mathcal{T}$ plane in the region available to PL plus Poisson noise processes. Interestingly, one FSRQ is located marginally below this region, while two FSRQs lie above the line $mathcal{T}=2/3$, i.e. they are even more noisy than white noise. The BL Lac candidates are characterised by higher $mathcal{A}$ values than FSRQs, i.e. $0.71pm 0.06$ and $0.29pm 0.05$, respectively.



rate research

Read More

We present an optical variability study of 44 newly identified blazar candidates behind the Magellanic Clouds, including 27 flat spectrum radio quasars (FSRQs) and 17 BL Lacertae objects (BL Lacs). All objects in the sample possess high photometric accuracy and irregularly sampled optical light curves (LCs) in I filter from the long-term monitoring conducted by the Optical Gravitational Lensing Experiment. We investigated the variability properties to look for blazar-like characteristics and to analyze the long-term behaviour. We analyzed the LCs with the Lomb-Scargle periodogram to construct power spectral densities (PSDs), found breaks for several objects, and linked them with accretion disk properties. In this way we constrained the black hole (BH) masses of 18 FSRQs to lie within the range $8.18leqlog (M_{rm BH}/M_odot)leq 10.84$, assuming a wide range of possible BH spins. By estimating the bolometric luminosities, we applied the fundamental plane of active galactic nuclei variability as an independent estimate, resulting in $8.4leqlog (M_{rm BH}/M_odot)leq 9.6$, with a mean error of 0.3. Many of the objects have very steep PSDs, with high frequency spectral index in the range $3-7$. An alternative attempt to classify the LCs was made using the Hurst exponent, $H$, and the $mathcal{A}-mathcal{T}$ plane. Two FSRQs and four BL Lacs yielded $H>0.5$, indicating presence of long-term memory in the underlying process governing the variability. Additionally, two FSRQs with exceptional PSDs, stand out also in the $mathcal{A}-mathcal{T}$ plane.
We report the identification of blazar candidates behind the Magellanic Clouds. The objects were selected from the Magellanic Quasars Survey (MQS), which targeted the entire Large Magellanic Cloud (LMC) and 70% of the Small Magellanic Cloud (SMC). Among the 758 MQS quasars and 898 of unidentified (featureless spectra) objects, we identified a sample of 44 blazar candidates, including 27 flat spectrum radio quasars and 17 BL Lacertae objects, respectively. All the blazar candidates from our sample were identified with respect to their radio, optical, and mid-infrared properties. The newly selected blazar candidates possess the long-term, multi-colour photometric data from the Optical Gravitational Lensing Experiment, multi-colour mid-infrared observations, and archival radio data for one frequency at least. In addition, for nine of them the radio polarization data are available. With such data, these objects can be used to study the physics behind the blazar variability detected in the optical and mid-infrared bands, as a tool to investigate magnetic field geometry of the LMC and SMC, and as an exemplary sample of point like sources most likely detectable in $gamma$-ray range with the newly emerging Cherenkov Telescope Array.
In an optical monitoring program to characterize the variability properties of blazar, we observed 10 sources from the Roma-BZCAT catalogue for 26 nights in V and R bands during October 2014 to June 2015 with two telescopes located in India. The sample includes mainly newly discovered BL Lacs where the redshift of some sources are not known yet. We present the results of flux and color variations of the sample on intraday and short time scales obtained by using the power-enhanced F-test and the nested-ANOVA tests, along with their spectral behavior. We find significant intraday variability in the single FSRQ in our sample, having an amplitude of variation ~12%. Although a few of BL Lacs showed probable variation in some nights, none of them passes the variability tests at 99.9% significance level. We find that 78% of the sample showed significant negative colour--magnitude correlations i.e., a redder-when-brighter spectral evolution. Those which do not show strong or clear chromatism, predominantly exhibit a redder-when-brighter trends. Unlike on hourly timescales, the high synchrotron peaked (HSP) blazars in the sample (BZGJ0656+4237, BZGJ0152+0147 and BZBJ1728+5013) show strong flux variation on days to months timescales, where again we detect a decreasing trend of the spectral slope with brightness. We observe a global steepening of the optical spectrum with increasing flux on intranight timescale for the entire blazar sample. Non-variability in the BL Lacs in our sample could be resulted by distinct contribution from the disk as well as from other components in the studied energy range.
The nearby Magellanic Clouds system covers more than 200 square degrees on the sky. Much of it has been mapped across the electromagnetic spectrum at high angular resolution and sensitivity X-ray (XMM-Newton), UV (UVIT), optical (SMASH), IR (VISTA, WISE, Spitzer, Herschel), radio (ATCA, ASKAP, MeerKAT). This provides us with an excellent dataset to explore the galaxy populations behind the stellar-rich Magellanic Clouds. We seek to identify and characterise AGN via machine learning algorithms on this exquisite data set. Our project focuses not on establishing sequences and distributions of common types of galaxies and active galactic nuclei (AGN), but seeks to identify extreme examples, building on the recent accidental discoveries of unique AGN behind the Magellanic Clouds.
Recent re-determination of stellar atmospheric parameters for a sample of stars observed during the {it Kepler} mission allowed to enlarge the number of {it Kepler} B-type stars. We present the detailed frequency analysis for all these objects. All stars exhibit pulsational variability with maximum amplitudes at frequencies corresponding to high-order g modes. Peaks that could be identified with low-order p/g modes are also extracted for a few stars. We identified some patters in the oscillation spectra that can be associated with the period spacings that can result from the asymptotic nature of the detected pulsational modes. We also tentatively confront the observed oscillation characteristics with predictions from linear nonadiabatic computations of stellar pulsations. For high-order g modes the traditional approximation was employed to include the effects of rotation on the frequency values and mode instability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا