Contrastive Multi-document Question Generation


Abstract in English

Multi-document question generation focuses on generating a question that covers the common aspect of multiple documents. Such a model is useful in generating clarifying options. However, a naive model trained only using the targeted (positive) document set may generate too generic questions that cover a larger scope than delineated by the document set. To address this challenge, we introduce the contrastive learning strategy where given positive and negative sets of documents, we generate a question that is closely related to the positive set but is far away from the negative set. This setting allows generated questions to be more specific and related to the target document set. To generate such specific questions, we propose Multi-Source Coordinated Question Generator (MSCQG), a novel framework that includes a supervised learning (SL) stage and a reinforcement learning (RL) stage. In the SL stage, a single-document question generator is trained. In the RL stage, a coordinator model is trained to find optimal attention weights to align multiple single-document generators, by optimizing a reward designed to promote specificity of generated questions. We also develop an effective auxiliary objective, named Set-induced Contrastive Regularization (SCR) that improves the coordinators contrastive learning during the RL stage. We show that our model significantly outperforms several strong baselines, as measured by automatic metrics and human evaluation. The source repository is publicly available at url{www.github.com/woonsangcho/contrast_qgen}.

Download