Do you want to publish a course? Click here

How Implicit Regularization of ReLU Neural Networks Characterizes the Learned Function -- Part I: the 1-D Case of Two Layers with Random First Layer

102   0   0.0 ( 0 )
 Added by Jakob Heiss
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Today, various forms of neural networks are trained to perform approximation tasks in many fields. However, the estimates obtained are not fully understood on function space. Empirical results suggest that typical training algorithms favor regularized solutions. These observations motivate us to analyze properties of the neural networks found by gradient descent initialized close to zero, that is frequently employed to perform the training task. As a starting point, we consider one dimensional (shallow) ReLU neural networks in which weights are chosen randomly and only the terminal layer is trained. First, we rigorously show that for such networks ridge regularized regression corresponds in function space to regularizing the estimates second derivative for fairly general loss functionals. For least squares regression, we show that the trained network converges to the smooth spline interpolation of the training data as the number of hidden nodes tends to infinity. Moreover, we derive a correspondence between the early stopped gradient descent and the smoothing spline regression. Our analysis might give valuable insight on the properties of the solutions obtained using gradient descent methods in general settings.

rate research

Read More

91 - Yunfei Yang , Zhen Li , Yang Wang 2020
We study the expressive power of deep ReLU neural networks for approximating functions in dilated shift-invariant spaces, which are widely used in signal processing, image processing, communications and so on. Approximation error bounds are estimated with respect to the width and depth of neural networks. The network construction is based on the bit extraction and data-fitting capacity of deep neural networks. As applications of our main results, the approximation rates of classical function spaces such as Sobolev spaces and Besov spaces are obtained. We also give lower bounds of the $L^p (1le p le infty)$ approximation error for Sobolev spaces, which show that our construction of neural network is asymptotically optimal up to a logarithmic factor.
We study gradient-based regularization methods for neural networks. We mainly focus on two regularization methods: the total variation and the Tikhonov regularization. Applying these methods is equivalent to using neural networks to solve some partial differential equations, mostly in high dimensions in practical applications. In this work, we introduce a general framework to analyze the generalization error of regularized networks. The error estimate relies on two assumptions on the approximation error and the quadrature error. Moreover, we conduct some experiments on the image classification tasks to show that gradient-based methods can significantly improve the generalization ability and adversarial robustness of neural networks. A graphical extension of the gradient-based methods are also considered in the experiments.
In this paper, we introduce adaptive neuron enhancement (ANE) method for the best least-squares approximation using two-layer ReLU neural networks (NNs). For a given function f(x), the ANE method generates a two-layer ReLU NN and a numerical integration mesh such that the approximation accuracy is within the prescribed tolerance. The ANE method provides a natural process for obtaining a good initialization which is crucial for training nonlinear optimization problems. Numerical results of the ANE method are presented for functions of two variables exhibiting either intersecting interface singularities or sharp interior layers.
We consider the dynamic of gradient descent for learning a two-layer neural network. We assume the input $xinmathbb{R}^d$ is drawn from a Gaussian distribution and the label of $x$ satisfies $f^{star}(x) = a^{top}|W^{star}x|$, where $ainmathbb{R}^d$ is a nonnegative vector and $W^{star} inmathbb{R}^{dtimes d}$ is an orthonormal matrix. We show that an over-parametrized two-layer neural network with ReLU activation, trained by gradient descent from random initialization, can provably learn the ground truth network with population loss at most $o(1/d)$ in polynomial time with polynomial samples. On the other hand, we prove that any kernel method, including Neural Tangent Kernel, with a polynomial number of samples in $d$, has population loss at least $Omega(1 / d)$.
We study the optimization problem associated with fitting two-layer ReLU neural networks with respect to the squared loss, where labels are generated by a target network. We make use of the rich symmetry structure to develop a novel set of tools for studying families of spurious minima. In contrast to existing approaches which operate in limiting regimes, our technique directly addresses the nonconvex loss landscape for a finite number of inputs $d$ and neurons $k$, and provides analytic, rather than heuristic, information. In particular, we derive analytic estimates for the loss at different minima, and prove that modulo $O(d^{-1/2})$-terms the Hessian spectrum concentrates near small positive constants, with the exception of $Theta(d)$ eigenvalues which grow linearly with~$d$. We further show that the Hessian spectrum at global and spurious minima coincide to $O(d^{-1/2})$-order, thus challenging our ability to argue about statistical generalization through local curvature. Lastly, our technique provides the exact emph{fractional} dimensionality at which families of critical points turn from saddles into spurious minima. This makes possible the study of the creation and the annihilation of spurious minima using powerful tools from equivariant bifurcation theory.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا