Do you want to publish a course? Click here

OpenML-Python: an extensible Python API for OpenML

115   0   0.0 ( 0 )
 Added by Joaquin Vanschoren
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

OpenML is an online platform for open science collaboration in machine learning, used to share datasets and results of machine learning experiments. In this paper we introduce OpenML-Python, a client API for Python, opening up the OpenML platform for a wide range of Python-based tools. It provides easy access to all datasets, tasks and experiments on OpenML from within Python. It also provides functionality to conduct machine learning experiments, upload the results to OpenML, and reproduce results which are stored on OpenML. Furthermore, it comes with a scikit-learn plugin and a plugin mechanism to easily integrate other machine learning libraries written in Python into the OpenML ecosystem. Source code and documentation is available at https://github.com/openml/openml-python/.



rate research

Read More

Machine learning research depends on objectively interpretable, comparable, and reproducible algorithm benchmarks. Therefore, we advocate the use of curated, comprehensive suites of machine learning tasks to standardize the setup, execution, and reporting of benchmarks. We enable this through software tools that help to create and leverage these benchmarking suites. These are seamlessly integrated into the OpenML platform, and accessible through interfaces in Python, Java, and R. OpenML benchmarking suites are (a) easy to use through standardized data formats, APIs, and client libraries; (b) machine-readable, with extensive meta-information on the included datasets; and (c) allow benchmarks to be shared and reused in future studies. We also present a first, carefully curated and practical benchmarking suite for classification: the OpenML Curated Classification benchmarking suite 2018 (OpenML-CC18).
Supervised machine learning methods usually require a large set of labeled examples for model training. However, in many real applications, there are plentiful unlabeled data but limited labeled data; and the acquisition of labels is costly. Active learning (AL) reduces the labeling cost by iteratively selecting the most valuable data to query their labels from the annotator. This article introduces a Python toobox ALiPy for active learning. ALiPy provides a module based implementation of active learning framework, which allows users to conveniently evaluate, compare and analyze the performance of active learning methods. In the toolbox, multiple options are available for each component of the learning framework, including data process, active selection, label query, results visualization, etc. In addition to the implementations of more than 20 state-of-the-art active learning algorithms, ALiPy also supports users to easily configure and implement their own approaches under different active learning settings, such as AL for multi-label data, AL with noisy annotators, AL with different costs and so on. The toolbox is well-documented and open-source on Github, and can be easily installed through PyPI.
Hyperparameter optimization (HPO) is a core problem for the machine learning community and remains largely unsolved due to the significant computational resources required to evaluate hyperparameter configurations. As a result, a series of recent related works have focused on the direction of transfer learning for quickly fine-tuning hyperparameters on a dataset. Unfortunately, the community does not have a common large-scale benchmark for comparing HPO algorithms. Instead, the de facto practice consists of empirical protocols on arbitrary small-scale meta-datasets that vary inconsistently across publications, making reproducibility a challenge. To resolve this major bottleneck and enable a fair and fast comparison of black-box HPO methods on a level playing field, we propose HPO-B, a new large-scale benchmark in the form of a collection of meta-datasets. Our benchmark is assembled and preprocessed from the OpenML repository and consists of 176 search spaces (algorithms) evaluated sparsely on 196 datasets with a total of 6.4 million hyperparameter evaluations. For ensuring reproducibility on our benchmark, we detail explicit experimental protocols, splits, and evaluation measures for comparing methods for both non-transfer, as well as, transfer learning HPO.
Understanding the influence of hyperparameters on the performance of a machine learning algorithm is an important scientific topic in itself and can help to improve automatic hyperparameter tuning procedures. Unfortunately, experimental meta data for this purpose is still rare. This paper presents a large, free and open dataset addressing this problem, containing results on 38 OpenML data sets, six different machine learning algorithms and many different hyperparameter configurations. Results where generated by an automated random sampling strategy, termed the OpenML Random Bot. Each algorithm was cross-validated up to 20.000 times per dataset with different hyperparameters settings, resulting in a meta dataset of around 2.5 million experiments overall.
We introduce GraSPy, a Python library devoted to statistical inference, machine learning, and visualization of random graphs and graph populations. This package provides flexible and easy-to-use algorithms for analyzing and understanding graphs with a scikit-learn compliant API. GraSPy can be downloaded from Python Package Index (PyPi), and is released under the Apache 2.0 open-source license. The documentation and all releases are available at https://neurodata.io/graspy.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا