No Arabic abstract
We study the diffusion of charm and beauty in the early stage of high energy nuclear collisions at RHIC and LHC energies, considering the interaction of these heavy quarks with the evolving Glasma by means of the Wong equations. In comparison with previous works, we add the longitudinal expansion as well as we estimate the effect of energy loss due to gluon radiation. We find that heavy quarks diffuse in the strong transverse color fields in the very early stage (0.2-0.3 fm/c) and this leads to a suppression at low $p_T$ and enhancement at intermediate low $p_T$. The shape of the observed nuclear suppression factor obtained within our calculations is in qualitative agreement with the experimental results of the same quantity for $D-$mesons in proton-nucleus collisions. We compute the nuclear suppression factor in nucleus-nucleus collisions as well, for both charm and beauty, finding a substantial impact of the evolving Glasma phase on these, suggesting that initialization of heavy quarks spectra in the quark-gluon plasma phase should not neglect the early evolution in the strong gluon fields.
Based on the recent RHIC and LHC experimental results, the $langle p_Trangle$ dependence of identified light flavour charged hadrons on $sqrt{(frac{dN}{dy})/S_{perp}}$, relevant scale in gluon saturation picture, is studied from $sqrt{s_{NN}}$=7.7 GeV up to 5.02 TeV. This study is extended to the slopes of the $langle p_Trangle$ dependence on the particle mass and the $langlebeta_Trangle$ parameter from Boltzmann-Gibbs Blast Wave (BGBW) fits of the $p_T$ spectra. A systematic decrease of the slope of the $langle p_Trangle$ dependence on $sqrt{(frac{dN}{dy})/S_{perp}}$ from BES to the LHC energies is evidenced. While for the RHIC energies, within the experimental errors, the $langle p_Trangle$/$sqrt{(frac{dN}{dy})/S_{perp}}$ does not depend on centrality, at the LHC energies a deviation from a linear behaviour is observed towards the most central collisions. The influence of the corona contribution to the observed trends is discussed. The slopes of the $langle p_Trangle$ particle mass dependence and the $langlebeta_Trangle$ parameter from BGBW fits scale well with $sqrt{(frac{dN}{dy})/S_{perp}}$. Similar systematic trends for pp at $sqrt{s}$=7 TeV are in a good agreement with the ones corresponding to Pb-Pb collisions at $sqrt{s_{NN}}$=2.76 TeV and 5.02 TeV pointing to a system size independent behaviour.
Hadronic resonances, having very short lifetime, like $rm{K}^{*0}$, can act as useful probes to understand and estimate lifetime of hadronic phase in ultra-relativistic proton-proton, p--Pb and heavy-ion collisions. Resonances with relatively longer lifetime, like $phi$ meson, can serve as a tool to locate the QGP phase boundary. We estimate a lower limit of hadronic phase lifetime in Cu--Cu and Au--Au collisions at RHIC, and in pp, p--Pb and Pb--Pb collisions at different LHC collision energies. Also, we obtain the effective temperature of $phi$ meson using Boltzmann-Gibbs Blast-Wave function, which gives an insight to locate the QGP phase boundary. We observe that the hadronic phase lifetime strongly depends on final state charged-particle multiplicity, whereas the QGP phase and hence the QCD phase boundary shows a very weak multiplicity dependence. This suggests that the hadronisation from a QGP state starts at a similar temperature irrespective of charged-particle multiplicity, collision system and collision energy, while the endurance of hadronic phase is strongly dependent on final state charge-particle multiplicity, system size and collision energy.
The recent net-proton fluctuation results of the STAR (Solenoidal Tracker At RHIC) experiment from beam energy scan (BES) program at the BNL Relativistic Heavy Ion Collider (RHIC) have drawn much attention to exploring the QCD critical point and the nature of deconfinement phase transition. There has been much speculation that the non-monotonic behavior of $kappasigma^{2}$ of the produced protons around $sqrt{s_{rm NN}}$ = 19.6 GeV in the STAR results may be due to the existence of QCD critical point. However, the experimentally measured proton distributions contain protons from heavy resonance decays, from baryon stopping and from direct production processes. These proton distributions are used to estimate the net-proton number fluctuation. Because it is difficult to disentangle the protons from the above-mentioned sources, it is better to devise a method which will account for the directly produced baryons (protons) to study the dynamical fluctuation at different center-of-mass energies. This is because, it is assumed that any associated criticality in the system could affect the particle production mechanism and hence the dynamical fluctuation in various conserved numbers. In the present work, we demonstrate a method to estimate the number of stopped protons at RHIC BES energies for central $0-5%$ auau collisions within STAR acceptance and discuss its implications on the net-proton fluctuation results.
We report a systematic measurement of cumulants, $C_{n}$, for net-proton, proton and antiproton multiplicity distributions, and correlation functions, $kappa_n$, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au collisions at $sqrt{s_{mathrm {NN}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The $C_{n}$ and $kappa_n$ are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, $y$, and transverse momentum, $p_{T}$. The data were taken during the first phase of the Beam Energy Scan (BES) program (2010 -- 2017) at the BNL Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity ($|y| <$ 0.5) and transverse momentum 0.4 $<$ $p_{rm T}$ $<$ 2.0 GeV/$c$, using the STAR detector at RHIC. We observe a non-monotonic energy dependence ($sqrt{s_{mathrm {NN}}}$ = 7.7 -- 62.4 GeV) of the net-proton $C_{4}$/$C_{2}$ with the significance of 3.1$sigma$ for the 0-5% central Au+Au collisions. This is consistent with the expectations of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with $sqrt{s_{mathrm {NN}}}$. For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation function, $kappa_2$, of protons and antiprotons, which are mainly due to the effects of baryon number conservation. Furthermore, it is found that the four-particle correlation function, $kappa_4$, of protons plays a role in determining the energy dependence of proton $C_4/C_1$ below 19.6 GeV, which cannot be understood by the effect of baryon number conservation.
Collinear factorized perturbative QCD model predictions are compared for p+Pb at 4.4A TeV to test nuclear shadowing of parton distribution at the Large Hadron Collider (LHC). The nuclear modification factor (NMF), R_{pPb}(y=0,p_T<20 GeV/c) = dn_{p Pb} /(N_{coll}(b)dn_{pp}), is computed with electron-nucleus (e+A) global fit with different nuclear shadow distributions and compared to fixed Q^2 shadow ansatz used in Monte Carlo Heavy Ion Jet Interacting Generator (HIJING) type models. Due to rapid DGLAP reduction of shadowing with increasing Q^2 used in e+A global fit, our results confirm that no significant initial state suppression is expected (R_{pPb} (p_T) = 1 pm 0.1) in the p_T range 5 to 20 GeV/ c. In contrast, the fixed Q^2 shadowing models assumed in HIJING type models predict in the above p_T range a sizable suppression, R_{pPb} (p_T) = 0.6-0.7 at mid-pseudorapidity that is similar to the color glass condensate (CGC) model predictions. For central (N_{coll} = 12) p+ Pb collisions and at forward pseudorapidity (eta = 6) the HIJING type models predict smaller values of nuclear modification factors (R_{pPb}(p_T)) than in minimum bias events at mid-pseudorapidity (eta = 0). Observation of R_{pPb}(p_T= 5-20 GeV/c) less than 0.6 for minimum bias p+A collisions would pose a serious difficulty for separating initial from final state interactions in Pb+Pb collisions at LHC energies.