Do you want to publish a course? Click here

Theoretical description and experimental simulation of quantum entanglement near open time-like curves via pseudo-density operators

72   0   0.0 ( 0 )
 Added by Chiara Marletto
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Closed timelike curves are striking predictions of general relativity allowing for time-travel. They are afflicted by notorious causality issues (e.g. grandfathers paradox). Quantum models where a qubit travels back in time solve these problems, at the cost of violating quantum theorys linearity - leading e.g. to universal quantum cloning. Interestingly, linearity is violated even by open timelike curves (OTCs), where the qubit does not interact with its past copy, but is initially entangled with another qubit. Non-linear dynamics is needed to avoid violating entanglement monogamy. Here we propose an alternative approach to OTCs, allowing for monogamy violations. Specifically, we describe the qubit in the OTC via a pseudo-density operator - a unified descriptor of both temporal and spatial correlations. We also simulate the monogamy violation with polarization-entangled photons, providing a pseudo-density operator quantum tomography. Remarkably, our proposal applies to any space-time correlations violating entanglement monogamy, such as those arising in black holes.



rate research

Read More

Digital quantum simulators provide a diversified tool for solving the evolution of quantum systems with complicated Hamiltonians and hold great potential for a wide range of applications. Although much attention is paid to the unitary evolution of closed quantum systems, dissipation and noise are vital in understanding the dynamics of practical quantum systems. In this work, we experimentally demonstrate a digital simulation of an open quantum system in a controllable Markovian environment with the assistance of a single ancillary qubit. By Trotterizing the quantum Liouvillians, the continuous evolution of an open quantum system is effectively realized, and its application in error mitigation is demonstrated by adjusting the simulated noise intensities. High-order Trotter for open quantum dynamics is also experimentally investigated and shows higher accuracy. Our results represent a significant step towards hardware-efficient simulation of open quantum systems and error mitigation in quantum algorithms in noisy intermediate-scale quantum systems.
We show that, by utilising temporal quantum correlations as expressed by pseudo-density operators (PDOs), it is possible to recover formally the standard quantum dynamical evolution as a sequence of teleportations in time. We demonstrate that any completely positive evolution can be formally reconstructed by teleportation with different temporally correlated states. This provides a different interpretation of maximally correlated PDOs, as resources to induce quantum time-evolution. Furthermore, we note that the possibility of this protocol stems from the strict formal correspondence between spatial and temporal entanglement in quantum theory. We proceed to demonstrate experimentally this correspondence, by showing a multipartite violation of generalised temporal and spatial Bell inequalities and verifying agreement with theoretical predictions to a high degree of accuracy, in high-quality photon qubits.
Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einsteins field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxes can be resolved leaving closed timelike curves consistent with relativity. The study of these systems therefore provides valuable insight into non-linearities and the emergence of causal structures in quantum mechanics-essential for any formulation of a quantum theory of gravity. Here we experimentally simulate the non-linear behaviour of a qubit interacting unitarily with an older version of itself, addressing some of the fascinating effects that arise in systems traversing a closed timelike curve. These include perfect discrimination of non-orthogonal states and, most intriguingly, the ability to distinguish nominally equivalent ways of preparing pure quantum states. Finally, we examine the dependence of these effects on the initial qubit state, the form of the unitary interaction, and the influence of decoherence.
Within the context of quantum teleportation, a proposed intuitive model to explain bipartite entanglement describes the scheme as being the same qubit of information evolving along and against the flow of time of an external observer. We investigate the physicality of such a model by applying the time-reversal of the Schrodinger equation in the teleportation context. To do so, we first lay down the theory of time-reversal applied to the circuit model and then show that the outcome of a teleportation-like circuit is consistent with the usual tensor product treatment, thus independent of the physical quantum system used to encode the information. Finally, we demonstrate a proof of principle experiment on a liquid state NMR quantum information processor. The experimental results are consistent with the interpretation that information can be seen as flowing backward in time through entanglement.
Electron transport in realistic physical and chemical systems often involves the non-trivial exchange of energy with a large environment, requiring the definition and treatment of open quantum systems. Because the time evolution of an open quantum system employs a non-unitary operator, the simulation of open quantum systems presents a challenge for universal quantum computers constructed from only unitary operators or gates. Here we present a general algorithm for implementing the action of any non-unitary operator on an arbitrary state on a quantum device. We show that any quantum operator can be exactly decomposed as a linear combination of at most four unitary operators. We demonstrate this method on a two-level system in both zero and finite temperature amplitude damping channels. The results are in agreement with classical calculations, showing promise in simulating non-unitary operations on intermediate-term and future quantum devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا