By merging single-site typical medium theory with density functional theory we introduce a self-consistent framework for electronic structure calculations of materials with substitutional disorder which takes into account Anderson localization. The scheme and details of the implementation are presented and applied to the hypothetical alloy Li$_{c}$Be$_{1-c}$, and the results are compared with those obtained with the coherent potential approximation. Furthermore we demonstrate that Anderson localization suppresses ferromagnetic order for a very low concentration of (i) carbon impurities substituting oxygen in MgO$_{1-c}$C$_{c}$, and (ii) manganese impurities substituting magnesium in Mg$_{1-c}$Mn$_c$O for the low-spin magnetic configuration.