We give estimates for the eigenvalues of multi-form modified Dirac operators which are constructed from a standard Dirac operator with the addition of a Clifford algebra element associated to a multi-degree form. In particular such estimates are presented for modified Dirac operators with a $k$-degree form $0leq kleq 4$, those modified with multi-degree $(0,k)$-form $0leq kleq 3$ and the horizon Dirac operators which are modified with a multi-degree $(1,2,4)$-form. In particular, we give the necessary geometric conditions for such operators to admit zero modes as well as those for the zero modes to be parallel with a respect to a suitable connection. We also demonstrate that manifolds which admit such parallel spinors are associated with twisted covariant form hierarchies which generalize the conformal Killing-Yano forms.