No Arabic abstract
In Two Higgs Doublet Models (2HDMs) shaped by some unbroken symmetry, imposing perturbativity requirements on the quartic couplings can imply that the allowed masses of all the fundamental scalars are bounded from above. This important property is analysed in detail for the only two realistic 2HDMs with an exact symmetry, the case with $mathbb{Z}_2$ symmetry and the case with CP symmetry. It is also noticeable that one exception arises in each case: when the vacuum is assumed to respect the imposed symmetry, a decoupling regime can nevertheless appear without violating perturbativity requirements. In both models with an exact symmetry and no decoupling regime, soft symmetry breaking terms can however lead to a decoupling regime: the possibility that this regime might be unnatural, since it requires some fine tuning, is also analysed.
Appreciable CP Asymmetries (~ 10%) can arise in the reaction e+ e- -> t bar-t Z already at TREE-LEVEL in models with two Higgs doublets. For a neutral Higgs particle, h, with a mass in the range 50 GeV < m_h < 400 GeV, it may be possible to detect a 2-3 sigma CP-odd effect in e+ e- -> t bar-t Z in ~ 1-2 years of running of a future high energy e+e- collider with c.m. energies of ~ 1-2 TeV and an integrated luminosity of 200-500 inverse fb.
We study the possibility of spontaneous CP violation in the next-to-minimal supersymmetric standard model (NMSSM). It is shown that the spontaneous CP violation is induced by the radiative effects of top, stop, bottom and sbottom superfields. The available regions of parameters, which are obtained by imposing the constraints from experiments, are rather narrow. We also obtain strong constraints for light Higgs masses such as m_H le 36 GeV numerically. Sum of masses of two light neutral Higgs should set around 93 GeV and charged Higgs boson has a rather higher mass larger than 700 GeV.
A left-right symmetric model with two Higgs bi-doublet is shown to be a consistent model for both spontaneous P and CP violation. The flavor changing neutral currents can be suppressed by the mechanism of approximate global U(1) family symmetry. We calculate the constraints from neural $K$ meson mass difference $Delta m_K$ and demonstrate that a right-handed gauge boson $W_2$ contribution in box-diagrams with mass well below 1 TeV is allowed due to a cancellation caused by a light charged Higgs boson with a mass range $150 sim 300$ GeV. The $W_2$ contribution to $epsilon_K$ can be suppressed from appropriate choice of additional CP phases appearing in the right-handed Cabbibo-Kobayashi-Maskawa matrix. The model is also found to be fully consistent with $B^0$ mass difference $Delta m_B$, and the mixing-induced CP violation quantity $sin2beta_{J/psi}$, which is usually difficult for the model with only one Higgs bi-doublet. The new physics beyond the standard model can be directly searched at the colliders LHC and ILC.
Decades of precision measurements have firmly established the Kobayashi-Maskawa phase as the dominant source of the CP violation observed in weak quark decays. However, it is still unclear whether CP violation is explicitly encoded in complex Yukawa matrices or instead stems from spontaneous symmetry breaking with underlying CP-conserving Yukawa and Higgs sectors. Here we study the latter possibility for the case of a generic two-Higgs-doublet model. We find that theoretical constraints limit the ratio $t_beta$ of the vacuum expectation values to the range $0.22 leq t_beta leq 4.5$ and imply the upper bounds $M_{H^pm}leq 435$ GeV, $M_{H_{2}^0} leq 485$ GeV and $M_{H_{3}^0} leq 545$ GeV for the charged and extra neutral Higgs masses. We derive lower bounds on charged-Higgs couplings to bottom quarks which provide a strong motivation to study the non-standard production and decay signatures $p p to qb H^pm(to q^prime b)$ with all flavors $q,q^prime=u,c,t$ in the search for the charged Higgs boson. We further present a few benchmark scenarios with interesting discovery potential in collider analyses.
The two Higgs bi-doublet left-right symmetric model (2HBDM) as a simple extension of the minimal left-right symmetric model with a single Higgs bi-doublet is motivated to realize both spontaneous P and CP violation while consistent with the low energy phenomenology without significant fine tuning. By carefully investigating the Higgs potential of the model, we find that sizable CP-violating phases are allowed after the spontaneous symmetry breaking. The mass spectra of the extra scalars in the 2HBDM are significantly different from the ones in the minimal left-right symmetric model. In particular, we demonstrate in the decoupling limit when the right-handed gauge symmetry breaking scale is much higher than the electroweak scale, the 2HBDM decouples into general two Higgs doublet model (2HDM) with spontaneous CP violation and has rich induced sources of CP violation. We show that in the decoupling limit, it contains extra light Higgs bosons with masses around electroweak scale, which can be directly searched at the ongoing LHC and future ILC experiments.