No Arabic abstract
We study the ground state properties and nonequilibrium dynamics of two spinor bosonic impurities immersed in a one-dimensional bosonic gas upon applying an interspecies interaction quench. For the ground state of two non-interacting impurities we reveal signatures of attractive induced interactions in both cases of attractive or repulsive interspecies interactions, while a weak impurity-impurity repulsion forces the impurities to stay apart. Turning to the quench dynamics we inspect the time-evolution of the contrast unveiling the existence, dynamical deformation and the orthogonality catastrophe of Bose polarons. We find that for an increasing postquench repulsion the impurities reside in a superposition of two distinct two-body configurations while at strong repulsions their corresponding two-body correlation patterns show a spatially delocalized behavior evincing the involvement of higher excited states. For attractive interspecies couplings, the impurities exhibit a tendency to localize at the origin and remarkably for strong attractions they experience a mutual attraction on the two-body level that is imprinted as a density hump on the bosonic bath.
The emergence of quasiparticles in strongly interacting matter represents one of the cornerstones of modern physics. However, when different phases of matter compete near a quantum critical point, the very existence of quasiparticles comes under question. Here we create Bose polarons near quantum criticality by immersing atomic impurities in a Bose-Einstein condensate (BEC) with near-resonant interactions. Using locally-resolved radiofrequency spectroscopy, we probe the energy, spectral width, and short-range correlations of the impurities as a function of temperature. Far below the superfluid critical temperature, the impurities form well-defined quasiparticles. However, their inverse lifetime, given by their spectral width, is observed to increase linearly with temperature at the Planckian scale $frac{k_B T}{hbar}$, a hallmark of quantum critical behavior. Close to the BEC critical temperature, the spectral width exceeds the binding energy of the impurities, signaling a breakdown of the quasiparticle picture.
Few-body correlations emerging in two-dimensional harmonically trapped mixtures, are comprehensively investigated. The presence of the trap leads to the formation of atom-dimer and trap states, in addition to trimers. The Tans contacts of these eigenstates are studied for varying interspecies scattering lengths and mass ratio, while corresponding analytical insights are provided within the adiabatic hyperspherical formalism. The two- and three-body correlations of trimer states are substantially enhanced compared to the other eigenstates. The two-body contact of the atom-dimer and trap states features an upper bound regardless of the statistics, treated semi-classically and having an analytical prediction in the limit of large scattering lengths. Such an upper bound is absent in the three-body contact. Interestingly, by tuning the interspecies scattering length the contacts oscillate as the atom-dimer and trap states change character through the existent avoided-crossings in the energy spectra. For thermal gases, a gradual suppression of the involved two- and three-body correlations is evinced manifesting the impact of thermal effects. Moreover, spatial configurations of the distinct eigenstates ranging from localized structures to angular anisotropic patterns are captured. Our results provide valuable insights into the inherent correlation mechanisms of few-body mixtures which can be implemented in recent ultracold atom experiments and will be especially useful for probing the crossover from few- to many-atom systems.
This review explores the dynamics and the low-energy excitation spectra of Bose-Einstein condensates (BECs) of interacting bosons in external potential traps putting particular emphasis on the emerging many-body effects beyond mean-field descriptions. To do so, methods have to be used that, in principle, can provide numerically exact results for both the dynamics and the excitation spectra in a systematic manner. Numerically exact results for the dynamics are presented employing the well-established multicongurational time-dependent Hartree for bosons (MCTDHB) method. The respective excitation spectra are calculated utilizing the more recently introduced linear-response theory atop it (LR-MCTDHB). The latter theory gives rise to an, in general, non-hermitian eigenvalue problem. The theory and its newly developed implementation are described in detail and benchmarked towards the exactly-solvable harmonic-interaction model. Several applications to BECs in one- and two-dimensional potential traps are discussed. With respect to dynamics, it is shown that both the out-of-equilibrium tunneling dynamics and the dynamics of trapped vortices are of many-body nature. Furthermore, many-body effects in the excitation spectra are presented for BECs in different trap geometries. It is demonstrated that even for essentially-condensed systems, the spectrum of the lowest-in-energy excitations computed at the many-body level can differ substantially from the standard mean-field description. In general, it is shown that bosons carrying angular momentum are more sensitive to many-body effects than bosons without. These effects are present in both the dynamics and the excitation spectrum.
We experimentally demonstrate how thermal properties in an non-equilibrium quantum many- body system emerge locally, spread in space and time, and finally lead to the globally relaxed state. In our experiment, we quench a one-dimensional (1D) Bose gas by coherently splitting it into two parts. By monitoring the phase coherence between the two parts we observe that the thermal correlations of a prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. Our results underline the close link between the propagation of correlations and relaxation processes in quantum many-body systems.
The strong interaction between Rydberg atoms can be used to control the strength and character of the interatomic interaction in ultracold gases by weakly dressing the atoms with a Rydberg state. Elaborate theoretical proposals for the realization of various complex phases and applications in quantum simulation exist. Also a simple model has been already developed that describes the basic idea of Rydberg dressing in a two-atom basis. However, an experimental realization has been elusive so far. We present a model describing the ground state of a Bose-Einstein condensate dressed with a Rydberg level based on the Rydberg blockade. This approach provides an intuitive understanding of the transition from pure twobody interaction to a regime of collective interactions. Furthermore it enables us to calculate the deformation of a three-dimensional sample under realistic experimental conditions in mean-field approximation. We compare full three-dimensional numerical calculations of the ground state to an analytic expression obtained within Thomas-Fermi approximation. Finally we discuss limitations and problems arising in an experimental realization of Rydberg dressing based on our experimental results. Our work enables the reader to straight forwardly estimate the experimental feasibility of Rydberg dressing in realistic three-dimensional atomic samples.