Do you want to publish a course? Click here

The Formation of Stars -- From Filaments to Cores to Protostars and Protoplanetry Disks

88   0   0.0 ( 0 )
 Added by James Di Francesco
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Star formation involves the flow of gas and dust within molecular clouds into protostars and young stellar objects (YSOs) due to gravity. Along the way, these flows are shaped significantly by many other mechanisms, including pressure, turbulent motions, magnetic fields, stellar feedback, jets, and angular momentum. How all these mechanisms interact nonlinearly with each other on various length scales leads to the formation and evolution of substructures within clouds, including filaments, clumps, cores, disks, outflows, the protostars/YSOs themselves, and planets. In this white paper, prepared for the 2020 Long Range Plan panel which will recommend Canadas future directions for astronomy, we describe the observational and theoretical leadership in the star formation field that Canadas vibrant community has demonstrated over the past decade. Drawing from this extensive background, we identify five key questions that must be addressed for further progress to be made in understanding star formation in the next decade. Addressing these questions will improve our understanding of the dynamics of the dense gas and the role of the magnetic field in star formation, the optical properties of the dust used to trace mass and magnetic fields, the sources of variability in star-forming objects on short timescales, and the physical processes that specifically promote the clustering of stars. We further highlight key facilities in which Canada should become involved to continue making progress in this field. Single-dish facilities we recommend include LSST, trans-atmospheric far-infrared telescopes like BLAST-TNG and SPICA, and ground-based telescopes like JCMT, GBT, and CCAT-p. Interferometric facilities we recommend include ALMA, ngVLA, and SKA1.



rate research

Read More

How important is the magnetic (B-) field when compared to gravity and turbulence in the star-formation process? Does its importance depend on scale and location? We summarize submm dust polarization observations towards the large filamentary infrared dark cloud G34 and towards a dense core in the high-mass star-forming region W51. We detect B-field orientations that are either perpendicular or parallel to the G34 filament axis. These B-field orientations further correlate with local velocity gradients. Towards three cores in G34 we find a varying importance between B-field, gravity, and turbulence that seems to dictate varying types of fragmentation. At highest resolution towards the gravity-dominated collapsing core W51 e2 we resolve new B-field features, such as converging B-field lines and possibly magnetic channels.
We present deep NIR observations of a dense region of Lupus 3 obtained with ESOs NTT and VLT. Using the NICE method we construct a dust extinction map of the cloud, which reveals embedded globules, a dense filament, and a dense ring structure. We derive dust column densities and masses for the entire cloud and for the individual structures therein. We construct radial extinction profiles for the embedded globules and find a range of profile shapes from relatively shallow profiles for cores with low peak extinctions, to relatively steep profiles for cores with high extinction. Overall the profiles are similar to those of pressure truncated isothermal spheres of varying center-to-edge density contrast. We apply Bonnor-Ebert analysis to compare the density profiles of the embedded cores in a quantitative manner and derive physical parameters such as temperatures, central densities, and external pressures. We examine the stability of the cores and find that two cores are likely stable and two are likely unstable. One of these latter cores is known to harbor an active protostar. Finally, we discuss the relation between an emerging cluster in Lupus 3 and the ring structure identified in our extinction map. Assuming that the ring is the remnant of the core within which the cluster originally formed we estimate that a star formation efficiency of ~ 30% characterized the formation of the small cluster. Our observations of Lupus 3 suggest an intimate link between the structure of a dense core and its state of star forming activity. The dense cores are found to span the entire range of evolution from a stable, starless core of modest central concentration, to an unstable, star-forming core which is highly centrally concentrated, to a significantly disrupted core from which a cluster of young stars is emerging.
The recent rapid progress in observations of circumstellar disks and extrasolar planets has reinforced the importance of understanding an intimate coupling between star and planet formation. Under such a circumstance, it may be invaluable to attempt to specify when and how planet formation begins in star-forming regions and to identify what physical processes/quantities are the most significant to make a link between star and planet formation. To this end, we have recently developed a couple of projects. These include an observational project about dust growth in Class 0 YSOs and a theoretical modeling project of the HL Tauri disk. For the first project, we utilize the archive data of radio interferometric observations, and examine whether dust growth, a first step of planet formation, occurs in Class 0 YSOs. We find that while our observational results can be reproduced by the presence of large ($sim$ mm) dust grains for some of YSOs under the single-component modified blackbody formalism, an interpretation of no dust growth would be possible when a more detailed model is used. For the second project, we consider an origin of the disk configuration around HL Tauri, focusing on magnetic fields. We find that magnetically induced disk winds may play an important role in the HL Tauri disk. The combination of these attempts may enable us to move towards a comprehensive understanding of how star and planet formation are intimately coupled with each other.
Observations of pre-/proto-stellar cores in young star-forming regions show them to be mass segregated, i.e. the most massive cores are centrally concentrated, whereas pre-main sequence stars in the same star-forming regions (and older regions) are not. We test whether this apparent contradiction can be explained by the massive cores fragmenting into stars of much lower mass, thereby washing out any signature of mass segregation in pre-main sequence stars. Whilst our fragmentation model can reproduce the stellar initial mass function, we find that the resultant distribution of pre-main sequence stars is mass segregated to an even higher degree than that of the cores, because massive cores still produce massive stars if the number of fragments is reasonably low (between one and five). We therefore suggest that the reason cores are observed to be mass segregated and stars are not is likely due to dynamical evolution of the stars, which can move significant distances in star-forming regions after their formation.
We investigate the formation of circumstellar disks and outflows subsequent to the collapse of molecular cloud cores with the magnetic field and turbulence. Numerical simulations are performed by using an adaptive mesh refinement to follow the evolution up to $sim 1000$~yr after the formation of a protostar. In the simulations, circumstellar disks are formed around the protostars; those in magnetized models are considerably smaller than those in nonmagnetized models, but their size increases with time. The models with stronger magnetic field tends to produce smaller disks. During evolution in the magnetized models, the mass ratios of a disk to a protostar is approximately constant at $sim 1-10$%. The circumstellar disks are aligned according to their angular momentum, and the outflows accelerate along the magnetic field on the $10-100$~au scale; this produces a disk that is misaligned with the outflow. The outflows are classified into two types: a magneto-centrifugal wind and a spiral flow. In the latter, because of the geometry, the axis of rotation is misaligned with the magnetic field. The magnetic field has an internal structure in the cloud cores, which also causes misalignment between the outflows and the magnetic field on the scale of the cloud core. The distribution of the angular momentum vectors in a core also has a non-monotonic internal structure. This should create a time-dependent accretion of angular momenta onto the circumstellar disk. Therefore, the circumstellar disks are expected to change their orientation as well as their sizes in the long-term evolutions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا