Do you want to publish a course? Click here

Efficient Production of S$_8$ in Interstellar Ices: The effects of cosmic ray-driven radiation chemistry and non-diffusive bulk reactions

96   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we reexamine sulfur chemistry occurring on and in the ice mantles of interstellar dust grains, and report the effects of two new modifications to standard astrochemical models; namely, (a) the incorporation of cosmic ray-driven radiation chemistry and (b) the assumption of fast, non-diffusive reactions for key radicals in the bulk. Results from our models of dense molecular clouds show that these changes can have a profound influence on the abundances of sulfur-bearing species in ice mantles, including a reduction in the abundance of solid-phase H$_2$S and HS, and a significant increase in the abundances of OCS, SO$_2$, as well as pure allotropes of sulfur, especially S$_8$. These pure-sulfur species - though nearly impossible to observe directly - have long been speculated to be potential sulfur reservoirs and our results represent possibly the most accurate estimates yet of their abundances in the dense ISM. Moreover, the results of these updated models are found to be in good agreement with available observational data. Finally, we examine the implications of our findings with regard to the as-yet-unknown sulfur reservoir thought to exist in dense interstellar environments.



rate research

Read More

Spectroscopic studies play a key role in the identification and analysis of interstellar ices and their structure. Some molecules have been identified within the interstellar ices either as pure, mixed, or even as layered structures. Absorption band features of water ice can significantly change with the presence of different types of impurities (CO, CO2, CH3OH, H2CO, etc.). In this work, we carried out a theoretical investigation to understand the behavior of water band frequency, and strength in the presence of impurities. The computational study has been supported and complemented by some infrared spectroscopy experiments aimed at verifying the effect of HCOOH, NH3 , and CH3 OH on the band profiles of pure H2O ice. Specifically, we explored the effect on the band strength of libration, bending, bulk stretching, and free-OH stretching modes. Computed band strength profiles have been compared with our new and existing experimental results, thus pointing out that vibrational modes of H2O and their intensities can change considerably in the presence of impurities at different concentrations. In most cases, the bulk stretching mode is the most affected vibration, while the bending is the least affected mode. HCOOH was found to have a strong influence on the libration, bending, and bulk stretching band profiles. In the case of NH3, the free-OH stretching band disappears when the impurity concentration becomes 50%. This work will ultimately aid a correct interpretation of future detailed spaceborne observations of interstellar ices by means of the upcoming JWST mission.
Predictions of astrochemical models depend strongly on the reaction rate coefficients used in the simulations. We reviewed a number of key reactions for the chemistry of nitrogen-bearing species in the dense interstellar medium and proposed new reaction rate coefficients for those reactions. The details of the reviews are given in the form of a datasheet associated with each reaction. The new recommended rate coefficients are given with an uncertainty and a temperature range of validity and will be included in KIDA (http://kida.obs.u-bordeaux1.fr).
219 - Alexei Ivlev 2015
The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold dense molecular cloud, to investigate two so far neglected mechanisms of dust charging: collection of suprathermal CR electrons and protons by grains, and photoelectric emission from grains due to the UV radiation generated by CRs. The two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: While the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities $n(mathrm{H_2})$ between $sim10^4$ cm$^{-3}$ and $sim10^6$ cm$^{-3}$. The charging effect of CR is of generic nature, and therefore is expected to operate not only in dense molecular clouds but also in the upper layers and the outer parts of protoplanetary discs.
Context. The formation of water on the dust grains in the interstellar medium may proceed with hydrogen peroxide (H2O2) as an intermediate. Recently gas-phase H2O2 has been detected in {rho} Oph A with an abundance of ~1E-10 relative to H2. Aims. We aim to reproduce the observed abundance of H2O2 and other species detected in {rho} Oph A quantitatively. Methods. We make use of a chemical network which includes gas phase reactions as well as processes on the grains; desorption from the grain surface through chemical reaction is also included. We run the model for a range of physical parameters. Results. The abundance of H2O2 can be best reproduced at ~6E5 yr, which is close to the dynamical age of {rho} Oph A. The abundances of other species such as H2CO, CH3OH, and O2 can be reasonably reproduced also at this time. In the early time the gas-phase abundance of H2O2 can be much higher than the current detected value. We predict a gas phase abundance of O2H at the same order of magnitude as H2O2, and an abundance of the order 1E-8 for gas phase water in {rho} Oph A. A few other species of interest are also discussed. Conclusions. We demonstrate that H2O2 can be produced on the dust grains and released into the gas phase through non-thermal desorption via surface exothermic reactions. The H2O2 molecule on the grain is an important intermediate in the formation of water. The fact that H2O2 is over-produced in the gas phase for a range of physical conditions suggests that its destruction channel in the current gas phase network may be incomplete.
We model the production of OH+, H2O+, and H3O+ in interstellar clouds, using a steady state photodissociation region code that treats the freeze-out of gas species, grain surface chemistry, and desorption of ices from grains. The code includes PAHs, which have important effects on the chemistry. All three ions generally have two peaks in abundance as a function of depth into the cloud, one at A_V<~1 and one at A_V~3-8, the exact values depending on the ratio of incident ultraviolet flux to gas density. For relatively low values of the incident far ultraviolet flux on the cloud ({chi}<~ 1000; {chi}= 1= local interstellar value), the columns of OH+ and H2O+ scale roughly as the cosmic ray primary ionization rate {zeta}(crp) divided by the hydrogen nucleus density n. The H3O+ column is dominated by the second peak, and we show that if PAHs are present, N(H3O+) ~ 4x10^{13} cm^{-2} independent of {zeta}(crp) or n. If there are no PAHs or very small grains at the second peak, N(H3O+) can attain such columns only if low ionization potential metals are heavily depleted. We also model diffuse and translucent clouds in the interstellar medium, and show how observations of N(OH+)/N(H) and N(OH+)/N(H2O+) can be used to estimate {zeta}(crp)/n, {chi}/n and A_V in them. We compare our models to Herschel observations of these two ions, and estimate {zeta}(crp) ~ 4-6 x 10^-16 (n/100 cm^-3) s^-1 and chi/n = 0.03 cm^3 for diffuse foreground clouds towards W49N.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا