Do you want to publish a course? Click here

Towards Learning Structure via Consensus for Face Segmentation and Parsing

135   0   0.0 ( 0 )
 Added by Iacopo Masi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Face segmentation is the task of densely labeling pixels on the face according to their semantics. While current methods place an emphasis on developing sophisticated architectures, use conditional random fields for smoothness, or rather employ adversarial training, we follow an alternative path towards robust face segmentation and parsing. Occlusions, along with other parts of the face, have a proper structure that needs to be propagated in the model during training. Unlike state-of-the-art methods that treat face segmentation as an independent pixel prediction problem, we argue instead that it should hold highly correlated outputs within the same object pixels. We thereby offer a novel learning mechanism to enforce structure in the prediction via consensus, guided by a robust loss function that forces pixel objects to be consistent with each other. Our face parser is trained by transferring knowledge from another model, yet it encourages spatial consistency while fitting the labels. Different than current practice, our method enjoys pixel-wise predictions, yet paves the way for fewer artifacts, less sparse masks, and spatially coherent outputs.



rate research

Read More

Face parsing is an important problem in computer vision that finds numerous applications including recognition and editing. Recently, deep convolutional neural networks (CNNs) have been applied to image parsing and segmentation with the state-of-the-art performance. In this paper, we propose a face parsing algorithm that combines hierarchical representations learned by a CNN, and accurate label propagations achieved by a spatially variant recurrent neural network (RNN). The RNN-based propagation approach enables efficient inference over a global space with the guidance of semantic edges generated by a local convolutional model. Since the convolutional architecture can be shallow and the spatial RNN can have few parameters, the framework is much faster and more light-weighted than the state-of-the-art CNNs for the same task. We apply the proposed model to coarse-grained and fine-grained face parsing. For fine-grained face parsing, we develop a two-stage approach by first identifying the main regions and then segmenting the detail components, which achieves better performance in terms of accuracy and efficiency. With a single GPU, the proposed algorithm parses face images accurately at 300 frames per second, which facilitates real-time applications.
96 - Ying Huang , Wenwei Zhang , 2020
Face anti-spoofing is crucial for the security of face recognition system, by avoiding invaded with presentation attack. Previous works have shown the effectiveness of using depth and temporal supervision for this task. However, depth supervision is often considered only in a single frame, and temporal supervision is explored by utilizing certain signals which is not robust to the change of scenes. In this work, motivated by two stream ConvNets, we propose a novel two stream FreqSaptialTemporalNet for face anti-spoofing which simultaneously takes advantage of frequent, spatial and temporal information. Compared with existing methods which mine spoofing cues in multi-frame RGB image, we make multi-frame spectrum image as one input stream for the discriminative deep neural network, encouraging the primary difference between live and fake video to be automatically unearthed. Extensive experiments show promising improvement results using the proposed architecture. Meanwhile, we proposed a concise method to obtain a large amount of spoofing training data by utilizing a frequent augmentation pipeline, which contributes detail visualization between live and fake images as well as data insufficiency issue when training large networks.
128 - Gusi Te , Wei Hu , Yinglu Liu 2021
Face parsing infers a pixel-wise label to each facial component, which has drawn much attention recently.Previous methods have shown their success in face parsing, which however overlook the correlation among facial components.As a matter of fact, the component-wise relationship is a critical clue in discriminating ambiguous pixels in facial area.To address this issue, we propose adaptive graph representation learning and reasoning over facial components, aiming to learn representative vertices that describe each component, exploit the component-wise relationship and thereby produce accurate parsing results against ambiguity. In particular, we devise an adaptive and differentiable graph abstraction method to represent the components on a graph via pixel-to-vertex projection under the initial condition of a predicted parsing map, where pixel features within a certain facial region are aggregated onto a vertex. Further, we explicitly incorporate the image edge as a prior in the model, which helps to discriminate edge and non-edge pixels during the projection, thus leading to refined parsing results along the edges.Then, our model learns and reasons over the relations among components by propagating information across vertices on the graph. Finally, the refined vertex features are projected back to pixel grids for the prediction of the final parsing map.To train our model, we propose a discriminative loss to penalize small distances between vertices in the feature space, which leads to distinct vertices with strong semantics. Experimental results show the superior performance of the proposed model on multiple face parsing datasets, along with the validation on the human parsing task to demonstrate the generalizability of our model.
76 - Gusi Te , Yinglu Liu , Wei Hu 2020
Face parsing infers a pixel-wise label to each facial component, which has drawn much attention recently. Previous methods have shown their efficiency in face parsing, which however overlook the correlation among different face regions. The correlation is a critical clue about the facial appearance, pose, expression etc., and should be taken into account for face parsing. To this end, we propose to model and reason the region-wise relations by learning graph representations, and leverage the edge information between regions for optimized abstraction. Specifically, we encode a facial image onto a global graph representation where a collection of pixels (regions) with similar features are projected to each vertex. Our model learns and reasons over relations between the regions by propagating information across vertices on the graph. Furthermore, we incorporate the edge information to aggregate the pixel-wise features onto vertices, which emphasizes on the features around edges for fine segmentation along edges. The finally learned graph representation is projected back to pixel grids for parsing. Experiments demonstrate that our model outperforms state-of-the-art methods on the widely used Helen dataset, and also exhibits the superior performance on the large-scale CelebAMask-HQ and LaPa dataset. The code is available at https://github.com/tegusi/EAGRNet.
Segmentation is a prerequisite yet challenging task for medical image analysis. In this paper, we introduce a novel deeply supervised active learning approach for finger bones segmentation. The proposed architecture is fine-tuned in an iterative and incremental learning manner. In each step, the deep supervision mechanism guides the learning process of hidden layers and selects samples to be labeled. Extensive experiments demonstrated that our method achieves competitive segmentation results using less labeled samples as compared with full annotation.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا