Do you want to publish a course? Click here

Fairness Violations and Mitigation under Covariate Shift

256   0   0.0 ( 0 )
 Added by Harvineet Singh
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We study the problem of learning fair prediction models for unseen test sets distributed differently from the train set. Stability against changes in data distribution is an important mandate for responsible deployment of models. The domain adaptation literature addresses this concern, albeit with the notion of stability limited to that of prediction accuracy. We identify sufficient conditions under which stable models, both in terms of prediction accuracy and fairness, can be learned. Using the causal graph describing the data and the anticipated shifts, we specify an approach based on feature selection that exploits conditional independencies in the data to estimate accuracy and fairness metrics for the test set. We show that for specific fairness definitions, the resulting model satisfies a form of worst-case optimality. In context of a healthcare task, we illustrate the advantages of the approach in making more equitable decisions.

rate research

Read More

Approximate Bayesian inference for neural networks is considered a robust alternative to standard training, often providing good performance on out-of-distribution data. However, Bayesian neural networks (BNNs) with high-fidelity approximate inference via full-batch Hamiltonian Monte Carlo achieve poor generalization under covariate shift, even underperforming classical estimation. We explain this surprising result, showing how a Bayesian model average can in fact be problematic under covariate shift, particularly in cases where linear dependencies in the input features cause a lack of posterior contraction. We additionally show why the same issue does not affect many approximate inference procedures, or classical maximum a-posteriori (MAP) training. Finally, we propose novel priors that improve the robustness of BNNs to many sources of covariate shift.
In many learning problems, the training and testing data follow different distributions and a particularly common situation is the textit{covariate shift}. To correct for sampling biases, most approaches, including the popular kernel mean matching (KMM), focus on estimating the importance weights between the two distributions. Reweighting-based methods, however, are exposed to high variance when the distributional discrepancy is large and the weights are poorly estimated. On the other hand, the alternate approach of using nonparametric regression (NR) incurs high bias when the training size is limited. In this paper, we propose and analyze a new estimator that systematically integrates the residuals of NR with KMM reweighting, based on a control-variate perspective. The proposed estimator can be shown to either strictly outperform or match the best-known existing rates for both KMM and NR, and thus is a robust combination of both estimators. The experiments shows the estimator works well in practice.
Covariate shift has been shown to sharply degrade both predictive accuracy and the calibration of uncertainty estimates for deep learning models. This is worrying, because covariate shift is prevalent in a wide range of real world deployment settings. However, in this paper, we note that frequently there exists the potential to access small unlabeled batches of the shifted data just before prediction time. This interesting observation enables a simple but surprisingly effective method which we call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift. Using this one line code change, we achieve state-of-the-art on recent covariate shift benchmarks and an mCE of 60.28% on the challenging ImageNet-C dataset; to our knowledge, this is the best result for any model that does not incorporate additional data augmentation or modification of the training pipeline. We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness (e.g. deep ensembles) and combining the two further improves performance. Our findings are supported by detailed measurements of the effect of this strategy on model behavior across rigorous ablations on various dataset modalities. However, the method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift, and is therefore worthy of additional study. We include links to the data in our figures to improve reproducibility, including a Python notebooks that can be run to easily modify our analysis at https://colab.research.google.com/drive/11N0wDZnMQQuLrRwRoumDCrhSaIhkqjof.
378 - Wei Du , Xintao Wu 2021
The underlying assumption of many machine learning algorithms is that the training data and test data are drawn from the same distributions. However, the assumption is often violated in real world due to the sample selection bias between the training and test data. Previous research works focus on reweighing biased training data to match the test data and then building classification models on the reweighed training data. However, how to achieve fairness in the built classification models is under-explored. In this paper, we propose a framework for robust and fair learning under sample selection bias. Our framework adopts the reweighing estimation approach for bias correction and the minimax robust estimation approach for achieving robustness on prediction accuracy. Moreover, during the minimax optimization, the fairness is achieved under the worst case, which guarantees the models fairness on test data. We further develop two algorithms to handle sample selection bias when test data is both available and unavailable. We conduct experiments on two real-world datasets and the experimental results demonstrate its effectiveness in terms of both utility and fairness metrics.
With the aim of building machine learning systems that incorporate standards of fairness and accountability, we explore explicit subgroup sample complexity bounds. The work is motivated by the observation that classifier predictions for real world datasets often demonstrate drastically different metrics, such as accuracy, when subdivided by specific sensitive variable subgroups. The reasons for these discrepancies are varied and not limited to the influence of mitigating variables, institutional bias, underlying population distributions as well as sampling bias. Among the numerous definitions of fairness that exist, we argue that at a minimum, principled ML practices should ensure that classification predictions are able to mirror the underlying sub-population distributions. However, as the number of sensitive variables increase, populations meeting at the intersectionality of these variables may simply not exist or may not be large enough to provide accurate samples for classification. In these increasingly likely scenarios, we make the case for human intervention and applying situational and individual definitions of fairness. In this paper we present lower bounds of subgroup sample complexity for metric-fair learning based on the theory of Probably Approximately Metric Fair Learning. We demonstrate that for a classifier to approach a definition of fairness in terms of specific sensitive variables, adequate subgroup population samples need to exist and the model dimensionality has to be aligned with subgroup population distributions. In cases where this is not feasible, we propose an approach using individual fairness definitions for achieving alignment. We look at two commonly explored UCI datasets under this lens and suggest human interventions for data collection for specific subgroups to achieve approximate individual fairness for linear hypotheses.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا