Do you want to publish a course? Click here

Entropy-stable positivity-preserving DG schemes for Boltzmann-Poisson models of collisional electronic transport along energy bands

63   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This work develops entropy-stable positivity-preserving DG methods as a computational scheme for Boltzmann-Poisson systems modeling the pdf of electronic transport along energy bands in semiconductor crystal lattices. We pose, using spherical or energy-angular variables as momentum coordinates, the corresponding Vlasov Boltzmann eq. with a linear collision operator with a singular measure modeling the scattering as functions of the energy band. We show stability results of semi-discrete DG schemes under an entropy norm for 1D-position 2D-momentum, and 2D-position 3D-momentum, using the dissipative properties of the collisional operator given its entropy inequality, which depends on the whole Hamiltonian rather than only the kinetic energy. For the 1D problem, knowledge of the analytic solution to Poisson and of the convergence to a constant current is crucial to obtain full stability. For the 2D problem, specular reflection BC are considered in addition to periodicity in the estimate for stability under an entropy norm. Regarding positivity preservation (1D position), we treat the collision operator as a source term and find convex combinations of the transport and collision terms which guarantee the positivity of the cell average of our numerical pdf at the next time step. The positivity of the numerical pdf in the whole domain is guaranteed by applying the natural limiters that preserve the cell average but modify the slope of the piecewise linear solutions in order to make the function non-negative. The use of a spherical coordinate system $vec{p}(|vec{p}|,mu=costheta,varphi)$ is slightly different to the choice in previous DG solvers for BP, since the proposed DG formulation gives simpler integrals involving just piecewise polynomial functions for both transport and collision terms, which is more adequate for Gaussian quadrature than previous approaches.



rate research

Read More

In this paper, we design and analyze third order positivity-preserving discontinuous Galerkin (DG) schemes for solving the time-dependent system of Poisson--Nernst--Planck (PNP) equations, which has found much use in diverse applications. Our DG method with Euler forward time discretization is shown to preserve the positivity of cell averages at all time steps. The positivity of numerical solutions is then restored by a scaling limiter in reference to positive weighted cell averages. The method is also shown to preserve steady states. Numerical examples are presented to demonstrate the third order accuracy and illustrate the positivity-preserving property in both one and two dimensions.
163 - Qing Cheng , Jie Shen 2021
We propose a new Lagrange multiplier approach to construct positivity preserving schemes for parabolic type equations. The new approach introduces a space-time Lagrange multiplier to enforce the positivity with the Karush-Kuhn-Tucker (KKT) conditions. We then use a predictor-corrector approach to construct a class of positivity schemes: with a generic semi-implicit or implicit scheme as the prediction step, and the correction step, which enforces the positivity, can be implemented with negligible cost. We also present a modification which allows us to construct schemes which, in addition to positivity preserving, is also mass conserving. This new approach is not restricted to any particular spatial discretization and can be combined with various time discretization schemes. We establish stability results for our first- and second-order schemes under a general setting, and present ample numerical results to validate the new approach.
In this paper, we construct and analyze a uniquely solvable, positivity preserving and unconditionally energy stable finite-difference scheme for the periodic three-component Macromolecular Microsphere Composite (MMC) hydrogels system, a ternary Cahn-Hilliard system with a Flory-Huggins-deGennes free energy potential. The proposed scheme is based on a convex-concave decomposition of the given energy functional with two variables, and the centered difference method is adopted in space. We provide a theoretical justification that this numerical scheme has a pair of unique solutions, such that the positivity is always preserved for all the singular terms, i.e., not only two phase variables are always between $0$ and $1$, but also the sum of two phase variables is between $0$ and $1$, at a point-wise level. In addition, we use the local Newton approximation and multigrid method to solve this nonlinear numerical scheme, and various numerical results are presented, including the numerical convergence test, positivity-preserving property test, energy dissipation and mass conservation properties.
We present several first-order and second-order numerical schemes for the Cahn-Hilliard equation with discrete unconditional energy stability. These schemes stem from the generalized Positive Auxiliary Variable (gPAV) idea, and require only the solution of linear algebraic systems with a constant coefficient matrix. More importantly, the computational complexity (operation count per time step) of these schemes is approximately a half of those of the gPAV and the scalar auxiliary variable (SAV) methods in previous works. We investigate the stability properties of the proposed schemes to establish stability bounds for the field function and the auxiliary variable, and also provide their error analyses. Numerical experiments are presented to verify the theoretical analyses and also demonstrate the stability of the schemes at large time step sizes.
The micro-macro (mM) decomposition approach is considered for the numerical solution of the Vlasov--Poisson--Lenard--Bernstein (VPLB) system, which is relevant for plasma physics applications. In the mM approach, the kinetic distribution function is decomposed as $f=mathcal{E}[boldsymbol{rho}_{f}]+g$, where $mathcal{E}$ is a local equilibrium distribution, depending on the macroscopic moments $boldsymbol{rho}_{f}=int_{mathbb{R}}boldsymbol{e} fdv=langleboldsymbol{e} frangle_{mathbb{R}}$, where $boldsymbol{e}=(1,v,frac{1}{2}v^{2})^{rm{T}}$, and $g$, the microscopic distribution, is defined such that $langleboldsymbol{e} grangle_{mathbb{R}}=0$. We aim to design numerical methods for the mM decomposition of the VPLB system, which consists of coupled equations for $boldsymbol{rho}_{f}$ and $g$. To this end, we use the discontinuous Galerkin (DG) method for phase-space discretization, and implicit-explicit (IMEX) time integration, where the phase-space advection terms are integrated explicitly and the collision operator is integrated implicitly. We give special consideration to ensure that the resulting mM method maintains the $langleboldsymbol{e} grangle_{mathbb{R}}=0$ constraint, which may be necessary for obtaining (i) satisfactory results in the collision dominated regime with coarse velocity resolution, and (ii) unambiguous conservation properties. The constraint-preserving property is achieved through a consistent discretization of the equations governing the micro and macro components. We present numerical results that demonstrate the performance of the mM method. The mM method is also compared against a corresponding DG-IMEX method solving directly for $f$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا