Do you want to publish a course? Click here

LFZip: Lossy compression of multivariate floating-point time series data via improved prediction

69   0   0.0 ( 0 )
 Added by Kedar Tatwawadi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Time series data compression is emerging as an important problem with the growth in IoT devices and sensors. Due to the presence of noise in these datasets, lossy compression can often provide significant compression gains without impacting the performance of downstream applications. In this work, we propose an error-bounded lossy compressor, LFZip, for multivariate floating-point time series data that provides guaranteed reconstruction up to user-specified maximum absolute error. The compressor is based on the prediction-quantization-entropy coder framework and benefits from improved prediction using linear models and neural networks. We evaluate the compressor on several time series datasets where it outperforms the existing state-of-the-art error-bounded lossy compressors. The code and data are available at https://github.com/shubhamchandak94/LFZip



rate research

Read More

Most data is automatically collected and only ever seen by algorithms. Yet, data compressors preserve perceptual fidelity rather than just the information needed by algorithms performing downstream tasks. In this paper, we characterize the bit-rate required to ensure high performance on all predictive tasks that are invariant under a set of transformations, such as data augmentations. Based on our theory, we design unsupervised objectives for training neural compressors. Using these objectives, we train a generic image compressor that achieves substantial rate savings (more than $1000times$ on ImageNet) compared to JPEG on 8 datasets, without decreasing downstream classification performance.
Multivariate time series (MTS) prediction plays a key role in many fields such as finance, energy and transport, where each individual time series corresponds to the data collected from a certain data source, so-called channel. A typical pipeline of building an MTS prediction model (PM) consists of selecting a subset of channels among all available ones, extracting features from the selected channels, and building a PM based on the extracted features, where each component involves certain optimization tasks, i.e., selection of channels, feature extraction (FE) methods, and PMs as well as configuration of the selected FE method and PM. Accordingly, pursuing the best prediction performance corresponds to optimizing the pipeline by solving all of its involved optimization problems. This is a non-trivial task due to the vastness of the solution space. Different from most of the existing works which target at optimizing certain components of the pipeline, we propose a novel evolutionary ensemble learning framework to optimize the entire pipeline in a holistic manner. In this framework, a specific pipeline is encoded as a candidate solution and a multi-objective evolutionary algorithm is applied under different population sizes to produce multiple Pareto optimal sets (POSs). Finally, selective ensemble learning is designed to choose the optimal subset of solutions from the POSs and combine them to yield final prediction by using greedy sequential selection and least square methods. We implement the proposed framework and evaluate our implementation on two real-world applications, i.e., electricity consumption prediction and air quality prediction. The performance comparison with state-of-the-art techniques demonstrates the superiority of the proposed approach.
Time-series analysis is critical for a diversity of applications in science and engineering. By leveraging the strengths of modern gradient descent algorithms, the Fourier transform, multi-resolution analysis, and Bayesian spectral analysis, we propose a data-driven approach to time-frequency analysis that circumvents many of the shortcomings of classic approaches, including the extraction of nonstationary signals with discontinuities in their behavior. The method introduced is equivalent to a {em nonstationary Fourier mode decomposition} (NFMD) for nonstationary and nonlinear temporal signals, allowing for the accurate identification of instantaneous frequencies and their amplitudes. The method is demonstrated on a diversity of time-series data, including on data from cantilever-based electrostatic force microscopy to quantify the time-dependent evolution of charging dynamics at the nanoscale.
Complex data structures such as time series are increasingly present in modern data science problems. A fundamental question is whether two such time-series are statistically dependent. Many current approaches make parametric assumptions on the random processes, only detect linear association, require multiple tests, or forfeit power in high-dimensional, nonlinear settings. Estimating the distribution of any test statistic under the null is non-trivial, as the permutation test is invalid. This work juxtaposes distance correlation (Dcorr) and multiscale graph correlation (MGC) from independence testing literature and block permutation from time series analysis to address these challenges. The proposed nonparametric procedure is valid and consistent, building upon prior work by characterizing the geometry of the relationship, estimating the time lag at which dependence is maximized, avoiding the need for multiple testing, and exhibiting superior power in high-dimensional, low sample size, nonlinear settings. Neural connectivity is analyzed via fMRI data, revealing linear dependence of signals within the visual network and default mode network, and nonlinear relationships in other networks. This work uncovers a first-resort data analysis tool with open-source code available, directly impacting a wide range of scientific disciplines.
Unsupervised learning seeks to uncover patterns in data. However, different kinds of noise may impede the discovery of useful substructure from real-world time-series data. In this work, we focus on mitigating the interference of left-censorship in the task of clustering. We provide conditions under which clusters and left-censorship may be identified; motivated by this result, we develop a deep generative, continuous-time model of time-series data that clusters while correcting for censorship time. We demonstrate accurate, stable, and interpretable results on synthetic data that outperform several benchmarks. To showcase the utility of our framework on real-world problems, we study how left-censorship can adversely affect the task of disease phenotyping, resulting in the often incorrect assumption that longitudinal patient data are aligned by disease stage. In reality, patients at the time of diagnosis are at different stages of the disease -- both late and early due to differences in when patients seek medical care and such discrepancy can confound unsupervised learning algorithms. On two clinical datasets, our model corrects for this form of censorship and recovers known clinical subtypes.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا