Do you want to publish a course? Click here

X-shaped Radio Galaxies: Optical Properties, Large-scale Environment and Relationship to Radio Structure

336   0   0.0 ( 0 )
 Added by Ravi Joshi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to find clues to the origin of the winged or X-shaped radio galaxies (XRGs) we investigate here the parent galaxies of a large sample of 106 XRGs for optical-radio axes alignment, interstellar medium, black hole mass, and large-scale environment. For 41 of the XRGs it was possible to determine the optical major axis and the primary radio axis and the strong tendency for the two axes to be fairly close is confirmed. However, several counter-examples were also found and these could challenge the widely discussed backflow diversion model for the origin of the radio wings. Comparison with a well-defined large sample of normal FR II radio galaxies has revealed that: (i) XRGs possess slightly less massive central black holes than the normal radio galaxies (average masses being log$M_{rm BH} sim$ 8.81 $M_{odot}$ and 9.07 $M_{odot}$, respectively); (ii) a much higher fraction of XRGs ($sim$ 80%) exhibits red mid-IR colors ($W2 - W3 > 1.5$), indicating a population of young stars and/or an enhanced dust mass, probably due to relatively recent galaxy merger(s). A comparison of the large-scale environment (i.e., within $sim$ 1 Mpc) shows that both XRGs and FRII radio galaxies inhabit similarly poor galaxy clustering environments (medium richness being 8.94 and 11.87, respectively). Overall, the origin of XRGs seems difficult to reconcile with a single dominant physical mechanism and competing mechanisms seem prevalent.



rate research

Read More

We explore the properties of the large-scale environment of FR0 radio galaxies belonging to the FR0CAT sample which includes 104 compact radio sources associated with nearby (z<0.05) early-type galaxies. By using various estimators we find that FR0s live in regions of higher than the average galaxies density and a factor two lower density, on average, with respect to FRI radio galaxies. This latter difference is driven by the large fraction (63%) of FR0s located in groups formed by less than 15 galaxies, an environment which FRIs rarely (17%) inhabit. Beside the lack of substantial extended radio emission defining the FR0s class, this is the first significant difference between the properties of these two populations of low power radio galaxies. We interpret the differences in environment between FR0s and FRIs as the due to an evolutionary link between local galaxies density, BH spin, jet power, and extended radio emission.
($ABRIDGED$) We probe the physical properties and large-scale environment of radio AGN in the faintest FR population to-date, and link them to their radio structure. We use the VLA-COSMOS Large Project at 3 GHz, with resolution and sensitivity of 0.75 and 2.3 $mu$Jy/beam, respectively, to explore the FR dichotomy down to $mu$Jy levels. We classify objects as FRIs, FRIIs or hybrid FRI/FRII based on the surface-brightness distribution along their radio structure. Our control sample is the jet-less/compact radio AGN (COM AGN) which show excess radio emission at 3 GHz VLA-COSMOS exceeding what is coming from star-formation alone; this sample excludes FRs. Largest angular projected sizes of FR objects are measured by a machine-learning algorithm and also by hand, following a parametric approach to the FR classification. Eddington ratios are calculated using scaling relations from the X-rays, while we include the jet power by using radio luminosity as a probe. We investigate their host properties (star-formation ratio, stellar mass, morphology), and we explore their incidence within X-ray galaxy groups in COSMOS, as well as in the density fields and cosmic-web probes in COSMOS. Our sample is composed of 59 FRIIs, 32 FRI/FRIIs, 39 FRIs, and 1818 COM AGN at 0.03 $le z le$ 6. FR objects have on average similar radio luminosities ($L_{rm 3~GHz}rm sim 10^{23}~W~Hz^{-1}~sr^{-1}$), spanning a range of $rm 10^{21-26}~W~Hz^{-1}~sr^{-1}$, and lie at a median redshift of $z ~sim ~1$. FRs reside in their majority in massive quenched hosts ($M_{*}~> 10^{10.5} M_{odot}$), with older episodes of star-formation linked to lower X-ray galaxy group temperatures, suggesting radio-mode AGN quenching. Irrespective of their radio structure, FRs and COM AGN are found in all types and density environments (group or cluster, filaments, field).
72 - M. Jamrozy 2004
Giant radio galaxies (GRGs), with linear sizes larger than 1 Mpc (H0=50 km/s/Mpc), represent the biggest single objects in the Universe. GRGs are rare among the entire population of radio galaxies (RGs) and their physical evolution is not well understood though for many years they have been of special interest for several reasons. The lobes of radio sources can compress cold gas clumps and trigger star or even dwarf galaxy formation, they can also transport gas from a host galaxy to large distances and seed the IGM with magnetic fields. Since GRGs have about 10 to 100 times larger sizes than normal RGs, their influence on the ambient medium is correspondingly wider and is pronounced on scales comparable to those of clusters of galaxies or larger. Therefore `giants could play an important role in the process of large-scale structure formation in the Universe. Recently, thanks to the new all sky radio surveys, significant progress in searching for new GRGs has been made.
136 - J. L. Richards 2014
Several narrow-line Seyfert 1 galaxies (NLS1s) have now been detected in gamma rays, providing firm evidence that at least some of this class of active galactic nuclei (AGN) produce relativistic jets. The presence of jets in NLS1s is surprising, as these sources are typified by comparatively small black hole masses and near- or super-Eddington accretion rates. This challenges the current understanding of the conditions necessary for jet production. Comparing the properties of the jets in NLS1s with those in more familiar jetted systems is thus essential to improve jet production models. We present early results from our campaign to monitor the kinematics and polarization of the parsec-scale jets in a sample of 15 NLS1s through multifrequency observations with the Very Long Baseline Array. These observations are complemented by fast-cadence 15 GHz monitoring with the Owens Valley Radio Observatory 40m telescope and optical spectroscopic monitoring with with the 2m class telescope at the Guillermo Haro Astrophysics Observatory in Cananea, Mexico.
The high-redshift quasar PMN J0909+0354 ($z=3.288$) is known to have a pc-scale compact jet structure, based on global 5-GHz very long baseline interferometry (VLBI) observations performed in 1992. Its kpc-scale structure was studied with the Karl G. Jansky Very Large Array (VLA) in the radio and the Chandra space telescope in X-rays. Apart from the north-northwestern jet component seen in both the VLA and Chandra images at $2.3$ separation from the core, there is another X-ray feature at $6.48$ in the northeastern (NE) direction. To uncover more details and possibly structural changes in the inner jet, we conducted new observations at 5 GHz using the European VLBI Network (EVN) in 2019. These data confirm the northward direction of the one-sided inner jet already suspected from the 1992 observations. A compact core and multiple jet components were identified that can be traced up to $sim0.25$ kpc projected distance towards the north, while the structure becomes more and more diffuse. A comparison with arcsec-resolution imaging with the VLA shows that the radio jet bends by $sim30^circ$ between the two scales. The direction of the pc-scale jet as well as the faint optical counterpart found for the newly-detected X-ray point source (NE) favors the nature of the latter as a background or foreground object in the field of view. However, the extended ($sim160$ kpc) emission around the positions of the quasar core and NE detected by the Wide-field Infrared Survey Explorer (WISE) in the mid-infrared might suggest physical interaction of the two objects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا