No Arabic abstract
Quantum criticality in iron pnictides involves both the nematic and antiferromagnetic degrees of freedom, but the relationship between the two types of fluctuations has yet to be clarified. Here we study this problem in the presence of a small external uniaxial potential, which breaks the $C_4$-symmetry in the B$_{1g}$ sector. We establish an identity that connects the spin excitation anisotropy, which is the difference of the dynamical spin susceptibilities at $vec{Q}_1=left(pi,0right)$ and $vec{Q}_2=left(0,piright)$, with the dynamical magnetic susceptibility and static nematic susceptibility. Using this identity, we introduce a scaling procedure to determine the dynamical nematic susceptibility in the quantum critical regime, and illustrate the procedure for the case of the optimally Ni-doped BaFe$_2$As$_2$[Y. Song textit{et al.}, Phys. Rev. B 92, 180504 (2015)]. The implications of our results for the overall physics of the iron-based superconductors are discussed.
Many of the iron pnictides have strongly anisotropic normal-state characteristics, important for the exotic magnetic and superconducting behavior these materials exhibit. Yet, the origin of the observed anisotropy is unclear. Electronically driven nematicity has been suggested, but distinguishing this as an independent degree of freedom from magnetic and structural orders is difficult, as these couple together to break the same tetragonal symmetry. Here we use time-resolved polarimetry to reveal critical nematic fluctuations in unstrained Ba(Fe_(1-x)Co_x)_2As_2. The femtosecond anisotropic response, which arises from the two-fold in-plane anisotropy of the complex refractive index, displays a characteristic two-step recovery absent in the isotropic response. The fast recovery appears only in the magnetically ordered state, whereas the slow one persists in the paramagnetic phase with a critical divergence approaching the structural transition temperature. The dynamics also reveal a gigantic magnetoelastic coupling that far exceeds electron-spin and electron-phonon couplings, opposite to conventional magnetic metals.
We study a two-orbital spin model to describe (pi,0) stripe antiferromagnetism in the iron pnictides. The double-spin model has an on-site Hundss coupling and inter-site interactions extending to second neighbors (inter- and intra-orbital) on the square lattice. Using a variational method based on a cluster decomposition, we optimize wave functions with up to 8 cluster sites (up to 2^16 variational parameters). We focus on the anomalously small ordered moments in the stripe state of the pnictides. To account for it, and large variations among different compounds, we show that the second-neighbor cross-orbital exchange constant should be ferromagnetic, which leads to partially hidden stripe order, with a moment that can be varied over a large range by small changes in the coupling constants. In a different parameter region, we confirm the existence of a canted state previously found in spin-wave theory. We also identify several other phases of the model.
We use inelastic neutron scattering to study acoustic phonons and spin excitations in single crystals of NaFeAs, a parent compound of iron pnictide superconductors. NaFeAs exhibits a tetragonal-to-orthorhombic structural transition at $T_sapprox 58$ K and a collinear antiferromagnetic (AF) order at $T_Napprox 45$ K. While longitudinal and out-of-plane transverse acoustic phonons behave as expected, the in-plane transverse acoustic phonons reveal considerable softening on cooling to $T_s$, and then harden on approaching $T_N$ before saturating below $T_N$. In addition, we find that spin-spin correlation lengths of low-energy magnetic excitations within the FeAs layer and along the $c$-axis increase dramatically below $T_s$, and show weak anomaly across $T_N$. These results suggest that the electronic nematic phase present in the paramagnetic tetragonal phase is closely associated with dynamic spin-lattice coupling, possibly arising from the one-phonon-two-magnon mechanism.
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental manifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.
Deviations of low-energy electronic structure of iron-based superconductors from density functional theory predictions have been parametrized in terms of band- and orbital-dependent mass renormalizations and energy shifts. The former have typically been described in terms of a local self-energy within the framework of dynamical mean field theory, while the latter appears to require non-local effects due to interband scattering. By calculating the renormalized bandstructure in both random phase approximation (RPA) and the two-particle self-consistent approximation (TPSC), we show that correlations in pnictide systems like LaFeAsO and LiFeAs can be described rather well by a non-local self-energy. In particular, Fermi pocket shrinkage as seen in experiment occurs due to repulsive interband finite-energy scattering. For the canonical iron chalcogenide system FeSe in its bulk tetragonal phase, the situation is however more complex since even including momentum-dependent band renormalizations cannot explain experimental findings. We propose that the long-range Coulomb interaction may play an important role in band-structure renormalization in FeSe. We further compare our evaluations of non-local quasiparticle scattering lifetime within RPA and TPSC with experimental data for LiFeAs.