No Arabic abstract
A result of B.Solomon (On the Gauss map of an area-minimizing hypersurface. 1984. Journal of Differential Geometry, 19(1), 221-232.) says that a compact minimal hypersurface $M^k$ of the sphere $S^{k+1}$ with $H^1(M)=0$, whose Gauss map omits a neighborhood of an $S^{k-1}$ equator, is totally geodesic in $S^{k+1}$. We develop a new proof strategy which can also obtain an analogous result for codimension 2 compact minimal submanifolds of $S^{k+1}$.
We study the asymptotics as $puparrow 2$ of stationary $p$-harmonic maps $u_pin W^{1,p}(M,S^1)$ from a compact manifold $M^n$ to $S^1$, satisfying the natural energy growth condition $$int_M|du_p|^p=O(frac{1}{2-p}).$$ Along a subsequence $p_jto 2$, we show that the singular sets $Sing(u_{p_j})$ converge to the support of a stationary, rectifiable $(n-2)$-varifold $V$ of density $Theta_{n-2}(|V|,cdot)geq 2pi$, given by the concentrated part of the measure $$mu=lim_{jtoinfty}(2-p_j)|du_{p_j}|^{p_j}dv_g.$$ When $n=2$, we show moreover that the density of $|V|$ takes values in $2pimathbb{N}$. Finally, on every compact manifold of dimension $ngeq 2$ we produce examples of nontrivial families $(1,2) i pmapsto u_pin W^{1,p}(M,S^1)$ of such maps via natural min-max constructions.
We examine volume pinching problems of CAT(1) spaces. We characterize a class of compact geodesically complete CAT(1) spaces of small specific volume. We prove a sphere theorem for compact CAT(1) homology manifolds of small volume. We also formulate a criterion of manifold recognition for homology manifolds on volume growths under an upper curvature bound.
In this paper, by using monotonicity formulas for vector bundle-valued $p$-forms satisfying the conservation law, we first obtain general $L^2$ global rigidity theorems for locally conformally flat (LCF) manifolds with constant scalar curvature, under curvature pinching conditions. Secondly, we prove vanishing results for $L^2$ and some non-$L^2$ harmonic $p$-forms on LCF manifolds, by assuming that the underlying manifolds satisfy pointwise or integral curvature conditions. Moreover, by a Theorem of Li-Tam for harmonic functions, we show that the underlying manifold must have only one end. Finally, we obtain Liouville theorems for $p$-harmonic functions on LCF manifolds under pointwise Ricci curvature conditions.
In this short note, we use a unified method to consider the gradient estimates of the positive solution to the following nonlinear elliptic equation $Delta u + au^{p+1}=0$ defined on a complete noncompact Riemannian manifold $(M, g)$ where $a > 0$ and $ p <frac{4}{n}$ or $a < 0$ and $p >0$ are two constants. For the case $a>0$, this improves considerably the previous known results except for the cases $dim(M)=4$ and supplements the results for the case $dim(M)leq 2$. For the case $a<0$ and $p>0$, we also improve considerably the previous related results. When the Ricci curvature of $(M,g)$ is nonnegative, we also obtain a Liouville-type theorem for the above equation.
This is a survey of our work on spacelike graphic submanifolds in pseudo-Riemannian products, namely on Heinz-Chern and Bernstein-Calabi results and on the mean curvature flow, with applications to the homotopy of maps between Riemannian manifolds.