Do you want to publish a course? Click here

Intelligent Reflecting Surface Aided Network: Power Control for Physical-Layer Broadcasting

88   0   0.0 ( 0 )
 Added by Huimei Han
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

As a recently proposed idea for future wireless systems, intelligent reflecting surface (IRS) can assist communications between entities which do not have high-quality direct channels in between. Specifically, an IRS comprises many low-cost passive elements, each of which reflects the incident signal by incurring a phase change so that the reflected signals add coherently at the receiver. In this paper, for an IRS-aided wireless network, we study the problem of power control at the base station (BS) for physical-layer broadcasting under quality of service (QoS) constraints at mobile users, by jointly designing the transmit beamforming at the BS and the phase shifts of the IRS units. Furthermore, we derive a lower bound of the minimum transmit power at the BS to present the performance bound for optimization methods. Simulation results show that, the transmit power at the BS approaches the lower bound with the increase of the number of IRS units, and is much lower than that of the communication system without IRS.



rate research

Read More

Reconfigurable intelligent surface (RIS), a recently introduced technology for future wireless com-munication systems, enhances the spectral and energy efficiency by intelligently adjusting the propaga-tion conditions between a base station (BS) and mobile equipments (MEs). An RIS consists of manylow-cost passive reflecting elements to improve the quality of the received signal. In this paper, westudy the problem of power control at the BS for the RIS aided physical-layer broadcasting. Our goalis to minimize the transmit power at the BS by jointly designing the transmit beamforming at the BSand the phase shifts of the passive elements at the RIS. Furthermore, to help validate the proposedoptimization methods, we derive lower bounds to quantify the average transmit power at the BS as afunction of the number of MEs, the number of RIS elements, and the number of antennas at the BS.The simulation results demonstrated that the average transmit power at the BS is close to the lowerbound in an RIS aided system, and is significantly lower than the average transmit power in conventionalschemes without the RIS.
In this paper, we investigate a large intelligent surface-enhanced (LIS-enhanced) system, where a LIS is deployed to assist secure transmission. Our design aims to maximize the achievable secrecy rates in different channel models, i.e., Rician fading and (or) independent and identically distributed Gaussian fading for the legitimate and eavesdropper channels. In addition, we take into consideration an artificial noise-aided transmission structure for further improving system performance. The difficulties of tackling the aforementioned problems are the structure of the expected secrecy rate expressions and the non-convex phase shift constraint. To facilitate the design, we propose two frameworks, namely the sample average approximation based (SAA-based) algorithm and the hybrid stochastic projected gradient-convergent policy (hybrid SPG-CP) algorithm, to calculate the expectation terms in the secrecy rate expressions. Meanwhile, majorization minimization (MM) is adopted to address the non-convexity of the phase shift constraint. In addition, we give some analyses on two special scenarios by making full use of the expectation terms. Simulation results show that the proposed algorithms effectively optimize the secrecy communication rate for the considered setup, and the LIS-enhanced system greatly improves secrecy performance compared to conventional architectures without LIS.
We introduce a novel system setup where a backscatter device operates in the presence of an intelligent reflecting surface (IRS). In particular, we study the bistatic backscatter communication (BackCom) system assisted by an IRS. The phase shifts at the IRS are optimized jointly with the transmit beamforming vector of the carrier emitter to minimize the transmit power consumption at the carrier emitter whilst guaranteeing a required BackCom performance. The unique channel characteristics arising from multiple reflections at the IRS render the optimization problem highly non-convex. Therefore, we jointly utilize the minorization-maximization algorithm and the semidefinite relaxation technique to present an approximate solution for the optimal IRS phase shift design. We also extend our analytical results to the monostatic BackCom system. Numerical results indicate that the introduction of the IRS brings about considerable reductions in transmit power, even with moderate IRS sizes, which can be translated to range increases over the non-IRS-assisted BackCom system.
177 - Shuowen Zhang , Rui Zhang 2019
Intelligent reflecting surface (IRS) is a promising solution to enhance the wireless communication capacity both cost-effectively and energy-efficiently, by properly altering the signal propagation via tuning a large number of passive reflecting units. In this paper, we aim to characterize the fundamental capacity limit of IRS-aided point-to-point multiple-input multiple-output (MIMO) communication systems with multi-antenna transmitter and receiver in general, by jointly optimizing the IRS reflection coefficients and the MIMO transmit covariance matrix. First, we consider narrowband transmission under frequency-flat fading channels, and develop an efficient alternating optimization algorithm to find a locally optimal solution by iteratively optimizing the transmit covariance matrix or one of the reflection coefficients with the others being fixed. Next, we consider capacity maximization for broadband transmission in a general MIMO orthogonal frequency division multiplexing (OFDM) system under frequency-selective fading channels, where transmit covariance matrices can be optimized for different subcarriers while only one common set of IRS reflection coefficients can be designed to cater to all subcarriers. To tackle this more challenging problem, we propose a new alternating optimization algorithm based on convex relaxation to find a high-quality suboptimal solution. Numerical results show that our proposed algorithms achieve substantially increased capacity compared to traditional MIMO channels without the IRS, and also outperform various benchmark schemes. In particular, it is shown that with the proposed algorithms, various key parameters of the IRS-aided MIMO channel such as channel total power, rank, and condition number can be significantly improved for capacity enhancement.
The intrinsic integration of the nonorthogonal multiple access (NOMA) and reconfigurable intelligent surface (RIS) techniques is envisioned to be a promising approach to significantly improve both the spectrum efficiency and energy efficiency for future wireless communication networks. In this paper, the physical layer security (PLS) for a RIS-aided NOMA 6G networks is investigated, in which a RIS is deployed to assist the two dead zone NOMA users and both internal and external eavesdropping are considered. For the scenario with only internal eavesdropping, we consider the worst case that the near-end user is untrusted and may try to intercept the information of far-end user. A joint beamforming and power allocation sub-optimal scheme is proposed to improve the system PLS. Then we extend our work to a scenario with both internal and external eavesdropping. Two sub-scenarios are considered in this scenario: one is the sub-scenario without channel state information (CSI) of eavesdroppers, and another is the sub-scenario where the eavesdroppers CSI are available. For the both sub-scenarios, a noise beamforming scheme is introduced to be against the external eavesdroppers. An optimal power allocation scheme is proposed to further improve the system physical security for the second sub-scenario. Simulation results show the superior performance of the proposed schemes. Moreover, it has also been shown that increasing the number of reflecting elements can bring more gain in secrecy performance than that of the transmit antennas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا