Do you want to publish a course? Click here

Object-oriented state editing for HRL

82   0   0.0 ( 0 )
 Added by Victor Bapst
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We introduce agents that use object-oriented reasoning to consider alternate states of the world in order to more quickly find solutions to problems. Specifically, a hierarchical controller directs a low-level agent to behave as if objects in the scene were added, deleted, or modified. The actions taken by the controller are defined over a graph-based representation of the scene, with actions corresponding to adding, deleting, or editing the nodes of a graph. We present preliminary results on three environments, demonstrating that our approach can achieve similar levels of reward as non-hierarchical agents, but with better data efficiency.



rate research

Read More

While great progress has been made recently in automatic image manipulation, it has been limited to object centric images like faces or structured scene datasets. In this work, we take a step towards general scene-level image editing by developing an automatic interaction-free object removal model. Our model learns to find and remove objects from general scene images using image-level labels and unpaired data in a generative adversarial network (GAN) framework. We achieve this with two key contributions: a two-stage editor architecture consisting of a mask generator and image in-painter that co-operate to remove objects, and a novel GAN based prior for the mask generator that allows us to flexibly incorporate knowledge about object shapes. We experimentally show on two datasets that our method effectively removes a wide variety of objects using weak supervision only
Object-based approaches for learning action-conditioned dynamics has demonstrated promise for generalization and interpretability. However, existing approaches suffer from structural limitations and optimization difficulties for common environments with multiple dynamic objects. In this paper, we present a novel self-supervised learning framework, called Multi-level Abstraction Object-oriented Predictor (MAOP), which employs a three-level learning architecture that enables efficient object-based dynamics learning from raw visual observations. We also design a spatial-temporal relational reasoning mechanism for MAOP to support instance-level dynamics learning and handle partial observability. Our results show that MAOP significantly outperforms previous methods in terms of sample efficiency and generalization over novel environments for learning environment models. We also demonstrate that learned dynamics models enable efficient planning in unseen environments, comparable to true environment models. In addition, MAOP learns semantically and visually interpretable disentangled representations.
Current deep reinforcement learning (RL) approaches incorporate minimal prior knowledge about the environment, limiting computational and sample efficiency. textit{Objects} provide a succinct and causal description of the world, and many recent works have proposed unsupervised object representation learning using priors and losses over static object properties like visual consistency. However, object dynamics and interactions are also critical cues for objectness. In this paper we propose a framework for reasoning about object dynamics and behavior to rapidly determine minimal and task-specific object representations. To demonstrate the need to reason over object behavior and dynamics, we introduce a suite of RGBD MuJoCo object collection and avoidance tasks that, while intuitive and visually simple, confound state-of-the-art unsupervised object representation learning algorithms. We also highlight the potential of this framework on several Atari games, using our object representation and standard RL and planning algorithms to learn dramatically faster than existing deep RL algorithms.
The seamless illumination integration between a foreground object and a background scene is an important but challenging task in computer vision and augmented reality community. However, to our knowledge, there is no publicly available high-quality dataset that meets the illumination seamless integration task, which greatly hinders the development of this research direction. To this end, we apply a physically-based rendering method to create a large-scale, high-quality dataset, named IH dataset, which provides rich illumination information for seamless illumination integration task. In addition, we propose a deep learning-based SI-GAN method, a multi-task collaborative network, which makes full use of the multi-scale attention mechanism and adversarial learning strategy to directly infer mapping relationship between the inserted foreground object and corresponding background environment, and edit object illumination according to the proposed illumination exchange mechanism in parallel network. By this means, we can achieve the seamless illumination integration without explicit estimation of 3D geometric information. Comprehensive experiments on both our dataset and real-world images collected from the Internet show that our proposed SI-GAN provides a practical and effective solution for image-based object illumination editing, and validate the superiority of our method against state-of-the-art methods.
We present Temporal and Object Quantification Networks (TOQ-Nets), a new class of neuro-symbolic networks with a structural bias that enables them to learn to recognize complex relational-temporal events. This is done by including reasoning layers that implement finite-domain quantification over objects and time. The structure allows them to generalize directly to input instances with varying numbers of objects in temporal sequences of varying lengths. We evaluate TOQ-Nets on input domains that require recognizing event-types in terms of complex temporal relational patterns. We demonstrate that TOQ-Nets can generalize from small amounts of data to scenarios containing more objects than were present during training and to temporal warpings of input sequences.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا