Do you want to publish a course? Click here

The Internet of Things: a Survey and Outlook

192   0   0.0 ( 0 )
 Added by Javier Del Ser Dr.
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The recent history has witnessed disruptive advances in disciplines related to information and communication technologies that have laid a rich technological ecosystem for the growth and maturity of latent paradigms in this domain. Among them, sensor networks have evolved from the originally conceived set-up where hundreds of nodes with sensing and actuating functionalities were deployed to capture information from their environment and act accordingly (coining the so-called wireless sensor network concept) to the provision of such functionalities embedded in quotidian objects that communicate and work together to collaboratively accomplish complex tasks based on the information they acquire by sensing the environment. This is nowadays a reality, embracing the original idea of an Internet of things (IoT) forged in the late twentieth century, yet featuring unprecedented scales, capabilities and applications ignited by new radio interfaces, communication protocols and intelligent data-based models. This chapter examines the latest findings reported in the literature around these topics, with a clear focus on IoT communications, protocols and platforms, towards ultimately identifying opportunities and trends that will be at the forefront of IoT-related research in the near future.



rate research

Read More

User privacy concerns are widely regarded as a key obstacle to the success of modern smart cyber-physical systems. In this paper, we analyse, through an example, some of the requirements that future data collection architectures of these systems should implement to provide effective privacy protection for users. Then, we give an example of how these requirements can be implemented in a smart home scenario. Our example architecture allows the user to balance the privacy risks with the potential benefits and take a practical decision determining the extent of the sharing. Based on this example architecture, we identify a number of challenges that must be addressed by future data processing systems in order to achieve effective privacy management for smart cyber-physical systems.
The Internet of Things (IoT) envisions the creation of an environment where everyday objects (e.g. microwaves, fridges, cars, coffee machines, etc.) are connected to the internet and make users lives more productive, efficient, and convenient. During this process, everyday objects capture a vast amount of data that can be used to understand individuals and their behaviours. In the current IoT ecosystems, such data is collected and used only by the respective IoT solutions. There is no formal way to share data with external entities. We believe this is very efficient and unfair for users. We believe that users, as data owners, should be able to control, manage, and share data about them in any way that they choose and make or gain value out of them. To achieve this, we proposed the Sensing as a Service (S2aaS) model. In this paper, we discuss the Sensing as a Service ecosystem in terms of its architecture, components and related user interaction designs. This paper aims to highlight the weaknesses of the current IoT ecosystem and to explain how S2aaS would eliminate those weaknesses. We also discuss how an everyday user may engage with the S2aaS ecosystem and design challenges.
Industrial Internet of Things (IIoT) lays a new paradigm for the concept of Industry 4.0 and paves an insight for new industrial era. Nowadays smart machines and smart factories use machine learning/deep learning based models for incurring intelligence. However, storing and communicating the data to the cloud and end device leads to issues in preserving privacy. In order to address this issue, federated learning (FL) technology is implemented in IIoT by the researchers nowadays to provide safe, accurate, robust and unbiased models. Integrating FL in IIoT ensures that no local sensitive data is exchanged, as the distribution of learning models over the edge devices has become more common with FL. Therefore, only the encrypted notifications and parameters are communicated to the central server. In this paper, we provide a thorough overview on integrating FL with IIoT in terms of privacy, resource and data management. The survey starts by articulating IIoT characteristics and fundamentals of distributive and FL. The motivation behind integrating IIoT and FL for achieving data privacy preservation and on-device learning are summarized. Then we discuss the potential of using machine learning, deep learning and blockchain techniques for FL in secure IIoT. Further we analyze and summarize the ways to handle the heterogeneous and huge data. Comprehensive background on data and resource management are then presented, followed by applications of IIoT with FL in healthcare and automobile industry. Finally, we shed light on challenges, some possible solutions and potential directions for future research.
The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.
The Internet of Things combines various earlier areas of research. As a result, research on the subject is still organized around these pre-existing areas: distributed computing with services and objects, networks (usually combining 6lowpan with Zigbee etc. for the last-hop), artificial intelligence and semantic web, and human-computer interaction. We are yet to create a unified model that covers all these perspectives - domain, device, service, agent, etc. In this paper, we propose the concept of cells as units of structure and context in the Internet of things. This allows us to have a unified vocabulary to refer to single entities (whether dumb motes, intelligent spimes, or virtual services), intranets of things, and finally the complete Internet of things. The question that naturally follows, is what criteria we choose to demarcate boundaries; we suggest various possible answers to this question. We also mention how this concept ties into the existing visions and protocols, and suggest how it may be used as the foundation of a formal model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا