No Arabic abstract
This paper proposes a novel method to establish the wellposedness and convergence theory of the uniaxial-perfectly-matched-layer (UPML) method in solving a two-dimensional acoustic scattering problem due to a compactly supported source, where the medium consists of two layers separated by the horizontal axis. When perfectly matched layer (PML) is used to truncate the vertical variable only, the medium structure becomes a closed waveguide. The Green function due to a primary source point in this waveguide can be constructed explicitly based on variable separations and Fourier transformations. In the horizontal direction, by properly placing periodical PMLs and locating periodic source points imaged by the primary source point, the exciting waveguide Green functions by those imaging points can be assembled to construct the Green function due to the primary source point for the two-layer medium truncated by a UPML. Incorporated with Greens identities, this UPML Green function directly leads to the wellposedness of the acoustic scattering problem in a UPML truncation with no constraints about wavenumbers or UPML absorbing strength. Consequently, we firstly prove that such a UPML truncating problem is unconditionally resonance free. Moreover, we show, under quite general conditions, that this UPML Green function converges to the exact layered Green function exponentially fast as absorbing strength of the UPML increases, which in turn gives rise to the exponential convergence of the solution of the UPML problem towards the original solution.
In this paper, an efficient iterative method is proposed for solving multiple scattering problem in locally inhomogeneous media. The key idea is to enclose the inhomogeneity of the media by well separated artificial boundaries and then apply purely outgoing wave decomposition for the scattering field outside the enclosed region. As a result, the original multiple scattering problem can be decomposed into a finite number of single scattering problems, where each of them communicates with the other scattering problems only through its surrounding artificial boundary. Accordingly, they can be solved in a parallel manner at each iteration. This framework enjoys a great flexibility in using different combinations of iterative algorithms and single scattering problem solvers. The spectral element method seamlessly integrated with the non-reflecting boundary condition and the GMRES iteration is advocated and implemented in this work. The convergence of the proposed method is proved by using the compactness of involved integral operators. Ample numerical examples are presented to show its high accuracy and efficiency.
In this work, we propose a local multiscale model reduction approach for the time-domain scalar wave equation in a heterogenous media. A fine mesh is used to capture the heterogeneities of the coefficient field, and the equation is solved globally on a coarse mesh in the discontinuous Galerkin discretization setting. The main idea of the model reduction approach is to extract dominant modes in local spectral problems for representation of important features, construct multiscale basis functions in coarse oversampled regions by constraint energy minimization problems, and perform a Petrov-Galerkin projection and a symmetrization onto the coarse grid. The method is expicit and energy conserving, and exhibits both coarse-mesh and spectral convergence, provided that the oversampling size is appropriately chosen. We study the stability and convergence of our method. We also present numerical results on the Marmousi model in order to test the performance of the method and verify the theoretical results.
For scattering problems of time-harmonic waves, the boundary integral equation (BIE) methods are highly competitive, since they are formulated on lower-dimension boundaries or interfaces, and can automatically satisfy outgoing radiation conditions. For scattering problems in a layered medium, standard BIE methods based on the Greens function of the background medium must evaluate the expensive Sommefeld integrals. Alternative BIE methods based on the free-space Greens function give rise to integral equations on unbounded interfaces which are not easy to truncate, since the wave fields on these interfaces decay very slowly. We develop a BIE method based on the perfectly matched layer (PML) technique. The PMLs are widely used to suppress outgoing waves in numerical methods that directly discretize the physical space. Our PML-based BIE method uses the Greens function of the PML-transformed free space to define the boundary integral operators. The method is efficient, since the Greens function of the PML-transformed free space is easy to evaluate and the PMLs are very effective in truncating the unbounded interfaces. Numerical examples are presented to validate our method and demonstrate its accuracy.
Using deep neural networks to solve PDEs has attracted a lot of attentions recently. However, why the deep learning method works is falling far behind its empirical success. In this paper, we provide a rigorous numerical analysis on deep Ritz method (DRM) cite{wan11} for second order elliptic equations with Neumann boundary conditions. We establish the first nonasymptotic convergence rate in $H^1$ norm for DRM using deep networks with $mathrm{ReLU}^2$ activation functions. In addition to providing a theoretical justification of DRM, our study also shed light on how to set the hyper-parameter of depth and width to achieve the desired convergence rate in terms of number of training samples. Technically, we derive bounds on the approximation error of deep $mathrm{ReLU}^2$ network in $H^1$ norm and on the Rademacher complexity of the non-Lipschitz composition of gradient norm and $mathrm{ReLU}^2$ network, both of which are of independent interest.
We study the efficient approximation of integrals involving Hankel functions of the first kind which arise in wave scattering problems on straight or convex polygonal boundaries. Filon methods have proved to be an effective way to approximate many types of highly oscillatory integrals, however finding such methods for integrals that involve non-linear oscillators and frequency-dependent singularities is subject to a significant amount of ongoing research. In this work, we demonstrate how Filon methods can be constructed for a class of integrals involving a Hankel function of the first kind. These methods allow the numerical approximation of the integral at uniform cost even when the frequency $omega$ is large. In constructing these Filon methods we also provide a stable algorithm for computing the Chebyshev moments of the integral based on duality to spectral methods applied to a version of Bessels equation. Our design for this algorithm has significant potential for further generalisations that would allow Filon methods to be constructed for a wide range of integrals involving special functions. These new extended Filon methods combine many favourable properties, including robustness in regard to the regularity of the integrand and fast approximation for large frequencies. As a consequence, they are of specific relevance to applications in wave scattering, and we show how they may be used in practice to assemble collocation matrices for wavelet-based collocation methods and for hybrid oscillatory approximation spaces in high-frequency wave scattering problems on convex polygonal shapes.